Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-Boolean computing with nanomagnets for computer vision applications

Abstract

The field of nanomagnetism has recently attracted tremendous attention as it can potentially deliver low-power, high-speed and dense non-volatile memories. It is now possible to engineer the size, shape, spacing, orientation and composition of sub-100 nm magnetic structures. This has spurred the exploration of nanomagnets for unconventional computing paradigms. Here, we harness the energy-minimization nature of nanomagnetic systems to solve the quadratic optimization problems that arise in computer vision applications, which are computationally expensive. By exploiting the magnetization states of nanomagnetic disks as state representations of a vortex and single domain, we develop a magnetic Hamiltonian and implement it in a magnetic system that can identify the salient features of a given image with more than 85% true positive rate. These results show the potential of this alternative computing method to develop a magnetic coprocessor that might solve complex problems in fewer clock cycles than traditional processors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stages in object recognition.
Figure 2: Schematic of the magnetization state abstraction model.
Figure 3: Steps involved in determining salient edges using the nanomagnetic coprocessor.
Figure 4: Perceptual organization results for an image, obtained using fabricated nanomagnetic systems.
Figure 5: Hardware schematics of envisioned magnetic coprocessor.

Similar content being viewed by others

References

  1. Park, J., Zha, H. & Kasturi, R. in Computer Vision—ECCV 2004 (eds Pajdla, T. & Matas, J.) 390–401 (Springer, 2004).

    Chapter  Google Scholar 

  2. Maciel, J. & Costeira, J. A global solution to sparse correspondence problems. IEEE Trans. Pattern Anal. Mach. Intell. 25, 187–199 (2003).

    Article  Google Scholar 

  3. Ng, A. Y., Jordan, M. I. & Weiss, Y. On spectral clustering: Analysis and an algorithm. Adv. Neural Inf. Proc. Syst. 2, 849–856 (2002).

    Google Scholar 

  4. Shi, J. & Malik, J. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000).

    Article  Google Scholar 

  5. Sarkar, S. & Soundararajan, P. Supervised learning of large perceptual organization: graph spectral partitioning and learning automata. IEEE Trans. Pattern Anal. Mach. Intell. 22, 504–525 (2000).

    Article  Google Scholar 

  6. Rota Bulò, S., Pelillo, M. & Bomze, I. M. Graph-based quadratic optimization: A fast evolutionary approach. Comput. Vis. Image Und. 115, 984–995 (2011).

    Article  Google Scholar 

  7. Levin, A., Rav Acha, A. & Lischinski, D. Spectral matting. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1699–1712 (2008).

    Article  Google Scholar 

  8. Liu, Y., Zhang, D., Lu, G. & Ma, W.-Y. A survey of content-based image retrieval with high-level semantics. Pattern Recogn. 40, 262–282 (2007).

    Article  Google Scholar 

  9. Iqbal, Q. & Aggarwal, J. K. Retrieval by classification of images containing large manmade objects using perceptual grouping. Pattern Recogn. 35, 1463–1479 (2002).

    Article  Google Scholar 

  10. Larsen, P., Rawlings, J. & Ferrier, N. Model-based object recognition to measure crystal size and shape distributions from in situ video images. Chem. Eng. Sci. 62, 1430–1441 (2007).

    Article  CAS  Google Scholar 

  11. Michaelsen, E., Soergel, U. & Thoennessen, U. Perceptual grouping for automatic detection of man-made structures in high-resolution SAR data. Pattern Recog. Lett. 27, 218–225 (2006).

    Article  Google Scholar 

  12. Parkin, S. S. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Mater. 3, 862–867 (2004).

    Article  CAS  Google Scholar 

  13. Åkerman, J. Toward a universal memory. Science 308, 508–510 (2005).

    Article  Google Scholar 

  14. Li, J., Ndai, P., Goel, A., Salahuddin, S. & Roy, K. Design paradigm for robust spin–torque transfer magnetic RAM (STT MRAM) from circuit/architecture perspective. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18, 1710–1723 (2010).

    Article  Google Scholar 

  15. Cowburn, R. P. & Welland, M. E. Room temperature magnetic quantum cellular automata. Science 287, 1466–1468 (2000).

    Article  CAS  Google Scholar 

  16. Imre, A. et al. Majority logic gate for magnetic quantum-dot cellular automata. Science 311, 205–208 (2006).

    Article  CAS  Google Scholar 

  17. Alam, M. et al. Experimental progress of and prospects for nanomagnet logic (NML). In Silicon Nanoelectronics Workshop (SNW) 1–2 (2010).

    Google Scholar 

  18. Karunaratne, D. K. & Bhanja, S. Study of single layer and multilayer nano-magnetic logic architectures. J. Appl. Phys. 111, 07A928 (2012).

    Article  Google Scholar 

  19. Yilmaz, Y. & Mazumder, P. Nonvolatile nanopipelining logic using multiferroic single-domain nanomagnets. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21, 1181–1188 (2013).

    Article  Google Scholar 

  20. Vacca, M. et al. Magnetoelastic clock system for nanomagnet logic. IEEE Trans. Nanotechnol. 13, 963–973 (2014).

    Article  Google Scholar 

  21. Anderson, N. G. & Bhanja, S. in Field-Coupled Nanocomputing: Paradigms, Progress, and Perspectives (eds Anderson, N. G. & Bhanja, S.) 8280 (Springer, 2014).

    Google Scholar 

  22. Behin-Aein, B., Datta, D., Salahuddin, S. & Datta, S. Proposal for an all-spin logic device with built-in memory. Nature Nanotech. 5, 266–270 (2010).

    Article  CAS  Google Scholar 

  23. Behin-Aein, B. Computing multi-magnet based devices and methods for solution of optimization problems. US patent 8,698,517 (2014).

  24. Behin-Aein, B., Sarkar, A. & Datta, S. Modeling circuits with spins and magnets for all-spin logic. In Proc. European Solid State Dev. Res. Conf. 36–40 (IEEE, 2012).

    Google Scholar 

  25. Csaba, G. & Porod, W. Computational study of spin–torque oscillator interactions for non-Boolean computing applications. IEEE Trans. Magn. 49, 4447–4451 (2013).

    Article  Google Scholar 

  26. Desolneux, A., Moisan, L. & Morel, J.-M. in Seeing, Thinking and Knowing (ed. Carsetti, A.) 71–101 (Springer, 2004).

    Chapter  Google Scholar 

  27. Boykov, Y., Veksler, O. & Zabih, R. Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001).

    Article  Google Scholar 

  28. METSlib: an open source tabu search metaheuristic framework in modern C++; https://projects.coin-or.org/metslib

  29. Kügel, A. Diplom-Informatiker Universität Ulm; http://www.maxsat.udl.cat/12/solvers/akmaxsat.pdf

  30. IBM ILOG CPLEX Optimizer 12.6.1; http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

  31. Sarkar, S. & Bhanja, S. Synthesizing energy minimizing quantum-dot cellular automata circuits for vision computing. In 5th IEEE Conf. Nanotechnol. 541–544 (IEEE, 2005).

    Google Scholar 

  32. Sarkar, S. & Bhanja, S. Direct quadratic minimization using magnetic field-based computing. In IEEE Int. Workshop on Design and Test of Nano Dev. Circuits Sys. 31–34 (IEEE, 2008).

    Chapter  Google Scholar 

  33. Pulecio, J., Bhanja, S. & Sarkar, S. An experimental demonstration of the viability of energy minimizing computing using nano-magnets. In 11th IEEE Conf. Nanotechnol. 1038–1042 (IEEE, 2011).

    Google Scholar 

  34. Cox, T. F. & Cox, M. A. Multidimensional Scaling (CRC Press, 2010).

    Google Scholar 

  35. Kumari, A., Sarkar, S., Pulecio, J. F., Karunaratne, D. & Bhanja, S. Study of magnetization state transition in closely spaced nanomagnet two-dimensional array for computation. J. Appl. Phys. 109, 07E513 (2011).

    Article  Google Scholar 

  36. Scheinfein, M. R. LLG micromagnetic simulator; http://llgmicro.home.mindspring.com/ (1997).

    Google Scholar 

  37. Das, J., Alam, S. M. & Bhanja, S. Non-destructive variability tolerant differential read for non-volatile logic. In IEEE 55th Int. Midwest Symp. Circuits Sys. 178–181 (IEEE, 2012).

    Google Scholar 

  38. Das, J., Alam, S. M. & Bhanja, S. Ultra-low power hybrid CMOS-magnetic logic architecture. IEEE Trans. Circuits Syst. I, Reg. Papers 59, 2008–2016 (2012).

    Article  Google Scholar 

  39. Lambert, C.-H. et al. All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337–1340 (2014).

    Article  CAS  Google Scholar 

  40. Liu, S. et al. Magnetic–electrical interface for nanomagnet logic. IEEE Trans. Nanotechnol. 10, 757–763 (2011).

    Article  Google Scholar 

  41. Becherer, M., Kiermaier, J., Breitkreutz, S., Eichwald, I. & Schmitt-Landsiedel, D. Nanomagnetic logic gate and an electronic device. US patent 8,872,547 (2014).

  42. Dong, X. et al. Circuit and microarchitecture evaluation of 3D stacking magnetic RAM (MRAM) as a universal memory replacement. In 45th ACM/IEEE Design Automation Conf. 554–559 (IEEE, 2008).

    Google Scholar 

  43. Hosaka, S. et al. Nano magnetic column arrays fabrication for patterned media in magnetic recording using EB lithography and ion milling. In IEEE Int. Conf. Electron Dev. Solid-State Circuits 140–143 (IEEE, 2009).

    Google Scholar 

  44. McGeoch, C. C. & Wang, C. Experimental evaluation of an adiabiatic quantum system for combinatorial optimization. In Proc. ACM Int. Conf. Computing Frontiers. 23 (ACM, 2013).

    Google Scholar 

  45. IBM ILOG CPLEX Optimizer performance benchmarks; http://www-01.ibm.com/software/commerce/optimization/cplex-performance/

  46. Jog, A. et al. in Cache revive: architecting volatile STT-RAM caches for enhanced performance in CMPs. In Proc. 49th Annu. Design Automation Conf. 243–252 (ACM, 2012).

    Google Scholar 

  47. Kultursay, E., Kandemir, M., Sivasubramaniam, A. & Mutlu, O. Evaluating STT-RAM as an energy-efficient main memory alternative. In 2013 IEEE Int. Symp. Performance Analysis Sys. Software 256–267 (IEEE, 2013).

    Google Scholar 

  48. Wang, K., Alzate, J. & Amiri, P. K. Low-power non-volatile spintronic memory: STT-RAM and beyond. J. Phys. D: Appl. Phys. 46, 074003 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Nanotechnology Research and Education Center at the University of South Florida and the National Science Foundation. This work was supported in part by NSF CAREER grant no. 0639624, NSF (CRI) grant no. 0551621 and NSF (EMT) grant no. 0829838. The authors thank J. Pulecio and A. Kumari for their earlier research.

Author information

Authors and Affiliations

Authors

Contributions

S.B. and S.S. proposed and supervised the project. The entire team was involved in modelling and analytical framework. R.P. implemented software code for the analytical and mathematical modelling of the nanomagnetic system under S.S's guidance. R.P. ran experiments for speed comparisons and prepared responses for the reviews with S.B. and S.S. supervision. D.K. fabricated the nanomagnetic systems and performed fabrication experiments. D.K and S.B. analysed the results of fabrication experiments. S.R. performed micromagnetic simulation experiments and programmability of the grid, with S.B's guidance. D.K. and R.P. prepared the initial draft of the paper. All authors discussed the results and modified the manuscript.

Corresponding author

Correspondence to Sanjukta Bhanja.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 11269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhanja, S., Karunaratne, D., Panchumarthy, R. et al. Non-Boolean computing with nanomagnets for computer vision applications. Nature Nanotech 11, 177–183 (2016). https://doi.org/10.1038/nnano.2015.245

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.245

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing