Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering

Abstract

The exceptional enhancement of Raman scattering by localized plasmonic resonances in the near field of metallic nanoparticles, surfaces or tips (SERS, TERS) has enabled spectroscopic fingerprinting down to the single molecule level. The conventional explanation attributes the enhancement to the subwavelength confinement of the electromagnetic field near nanoantennas. Here, we introduce a new model that also accounts for the dynamical nature of the plasmon–molecule interaction. We thereby reveal an enhancement mechanism not considered before: dynamical backaction amplification of molecular vibrations. We first map the system onto the canonical Hamiltonian of cavity optomechanics, in which the molecular vibration and the plasmon are parametrically coupled. We express the vacuum optomechanical coupling rate for individual molecules in plasmonic ‘hot-spots’ in terms of the vibrational mode's Raman activity and find it to be orders of magnitude larger than for microfabricated optomechanical systems. Remarkably, the frequency of commonly studied molecular vibrations can be comparable to or larger than the plasmon's decay rate. Together, these considerations predict that an excitation laser blue-detuned from the plasmon resonance can parametrically amplify the molecular vibration, leading to a nonlinear enhancement of Raman emission that is not predicted by the conventional theory. Our optomechanical approach recovers known results, provides a quantitative framework for the calculation of cross-sections, and enables the design of novel systems that leverage dynamical backaction to achieve additional, mode-selective enhancements. It also provides a quantum mechanical framework to analyse plasmon–vibrational interactions in terms of molecular quantum optomechanics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cavity-optomechanical model of the interaction between plasmon and molecular vibration.
Figure 2: Feedback diagram of dynamical backaction in the SERS process.
Figure 3: Sharpening of the Raman excitation spectral linewidth
Figure 4: Anomalous anti-Stokes/Stokes ratio under dynamical backaction amplification.

Similar content being viewed by others

References

  1. Fleischmann, M., Hendra, P. & McQuillan, A. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974).

    Article  CAS  Google Scholar 

  2. Jeanmaire, D. L. & Van Duyne, R. P. Surface Raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977).

    Article  CAS  Google Scholar 

  3. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    Article  CAS  Google Scholar 

  4. Nie, S. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  CAS  Google Scholar 

  5. Shalaev, V. & Sarychev, A. Nonlinear optics of random metal–dielectric films. Phys. Rev. B 57, 13265–13288 (1998).

    Article  CAS  Google Scholar 

  6. Pettinger, B., Schambach, P., Villagomez, C. J. & Scott, N. Tip-enhanced Raman spectroscopy near-fields acting on a few molecules. Annu. Rev. Phys. Chem. 63, 379–399 (2012).

    Article  CAS  Google Scholar 

  7. Sharma, B. et al. High-performance SERS substrates: advances and challenges. MRS Bull. 38, 615–624 (2013).

    Article  CAS  Google Scholar 

  8. Qian, X. M. & Nie, S. M. Single-molecule and single-nanoparticle SERS from fundamental mechanisms to biomedical applications. Chem. Soc. Rev. 37, 912–920 (2008).

    Article  CAS  Google Scholar 

  9. Luo, Y., Aubry, A. & Pendry, J. B. Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: a transformation optics approach. Phys. Rev. B 83, 155422 (2011).

    Article  Google Scholar 

  10. Kneipp, K. et al. Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering. Phys. Rev. Lett. 76, 2444–2447 (1996).

    Article  CAS  Google Scholar 

  11. Maher, R. C. et al. Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions. J. Chem. Phys. 120, 11746 (2004).

    Article  CAS  Google Scholar 

  12. Maher, R. C., Galloway, C. M., Le Ru, E. C., Cohen, L. F. & Etchegoin, P. G. Vibrational pumping in surface enhanced Raman scattering (SERS). Chem. Soc. Rev. 37, 965–979 (2008).

    Article  CAS  Google Scholar 

  13. Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).

    Article  CAS  Google Scholar 

  14. Zhu, W. & Crozier, K. B. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering. Nature Commun. 5, 5228 (2014).

    Article  CAS  Google Scholar 

  15. Jiang, S. et al. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering. Nature Nanotech. 10, 865–869 (2015).

    Article  CAS  Google Scholar 

  16. Atkin, J. M. & Raschke, M. B. Techniques: optical spectroscopy goes intramolecular. Nature 498, 44–45 (2013).

    Article  CAS  Google Scholar 

  17. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics back-action at the mesoscale. Science 321, 1172–1176 (2008).

    Article  CAS  Google Scholar 

  18. Braginsky, V. & Manukin, A. Ponderomotive effects of electromagnetic radiation. Sov. Phys. JETP 25, 653–655 (1967).

    Google Scholar 

  19. Kippenberg, T., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005).

    Article  CAS  Google Scholar 

  20. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).

    Article  Google Scholar 

  21. Gorodetsky, M. L., Schliesser, A., Anetsberger, G., Deleglise, S. & Kippenberg, T. J. Determination of the vacuum optomechanical coupling rate using frequency noise calibration. Opt. Express 18, 23236–23246 (2010).

    Article  CAS  Google Scholar 

  22. Van Laer, R., Kuyken, B., Baets, R. & Van Thourhout, D. Unifying Brillouin scattering and cavity optomechanics. Preprint at http://arXiv.org/abs/1503.03044 (2015).

  23. Shalabney, A. et al. Coherent coupling of molecular resonators with a microcavity mode. Nature Commun. 6, 5981 (2015).

    Article  CAS  Google Scholar 

  24. Long, J. P. & Simpkins, B. S. Coherent coupling between a molecular vibration and Fabry–Perot optical cavity to give hybridized states in the strong coupling limit. ACS Photon. 2, 130–136 (2015).

    Article  CAS  Google Scholar 

  25. Koenderink, A. F. On the use of Purcell factors for plasmon antennas. Opt. Lett. 35, 4208–4210 (2010).

    Article  CAS  Google Scholar 

  26. Schliesser, A. & Kippenberg, T. J. in Advances in Atomic, Molecular, and Optical Physics Vol. 58 (eds Berman, P., Arimondo, E. & Lin, C.) Ch. 5, 207–323 (Academic, 2010).

    Google Scholar 

  27. Le Ru, E. C. & Etchegoin, P. G. in Principles of Surface-Enhanced Raman Spectroscopy Ch. 6, 299–365 (Elsevier, 2009).

    Google Scholar 

  28. Boyd, R. Nonlinear Optics (Elsevier Science, 2003).

    Google Scholar 

  29. Botter, T., Brooks, D. W. C., Brahms, N., Schreppler, S. & Stamper-Kurn, D. M. Linear amplifier model for optomechanical systems. Phys. Rev. A 85, 013812 (2012).

    Article  Google Scholar 

  30. Wilson-Rae, I., Nooshi, N., Zwerger, W. & Kippenberg, T. J. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007).

    Article  CAS  Google Scholar 

  31. Galland, C., Sangouard, N., Piro, N., Gisin, N. & Kippenberg, T. J. Heralded single-phonon preparation, storage, and readout in cavity optomechanics. Phys. Rev. Lett. 112, 143602 (2014).

    Article  Google Scholar 

  32. Wilson, E., Decius, J. & Cross, P. Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra (Dover, 1955).

    Google Scholar 

  33. Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett. 101, 181115 (2012).

    Article  Google Scholar 

  34. Camden, J. P. et al. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 130, 12616–12617 (2008).

    Article  CAS  Google Scholar 

  35. Schliesser, A., Del'Haye, P., Nooshi, N., Vahala, K. J. & Kippenberg, T. J. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006).

    Article  CAS  Google Scholar 

  36. Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  37. Wilson-Rae, I., Nooshi, N., Dobrindt, J., Kippenberg, T. J. & Zwerger, W. Cavity-assisted backaction cooling of mechanical resonators. New J. Phys. 10, 095007 (2008).

    Article  Google Scholar 

  38. Kenkre, V., Tokmakoff, A. & Fayer, M. Theory of vibrational relaxation of polyatomic molecules in liquids. J. Phys. Chem. 101, 10618–10629 (1994).

    Article  CAS  Google Scholar 

  39. Savage, K. J. et al. Revealing the quantum regime in tunnelling plasmonics. Nature 491, 574–577 (2012).

    Article  CAS  Google Scholar 

  40. Scholl, J. A., Garca-Etxarri, A., Koh, A. L. & Dionne, J. A. Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 13, 564–569 (2013).

    Article  CAS  Google Scholar 

  41. Kipf, T. & Agarwal, G. S. Superradiance and collective gain in multimode optomechanics. Phys. Rev. A 90, 053808 (2014).

    Article  Google Scholar 

  42. Kasperczyk, M., Jorio, A., Neu, E., Maletinsky, P. & Novotny, L. Stokes–anti-Stokes correlations in diamond. Opt. Lett. 40, 2393–2396 (2015).

    Article  CAS  Google Scholar 

  43. Liu, N. et al. Plasmonic analogue of electromagnetically induced transparency at the drude damping limit. Nature Mater. 8, 758–762 (2009).

    Article  CAS  Google Scholar 

  44. McFarland, A. D., Young, M. A., Dieringer, J. A. & Van Duyne, R. P. Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 109, 11279–11285 (2005).

    Article  CAS  Google Scholar 

  45. Zuloaga, J. & Nordlander, P. On the energy shift between near-field and far-field peak intensities in localized plasmon systems. Nano Lett. 11, 1280–1283 (2011).

    Article  CAS  Google Scholar 

  46. Moreno, F., Albella, P. & Nieto-Vesperinas, M. Analysis of the spectral behavior of localized plasmon resonances in the near- and far-field regimes. Langmuir 29, 6715–6721 (2013).

    Article  CAS  Google Scholar 

  47. Esteban, R. et al. The morphology of narrow gaps modifies the plasmonic response. ACS Photon. 2, 295–305 (2015).

    Article  CAS  Google Scholar 

  48. Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010).

    Article  CAS  Google Scholar 

  49. Andrews, R. et al. Bidirectional and efficient conversion between microwave and optical light. Nature Phys. 10, 321–326 (2014).

    Article  CAS  Google Scholar 

  50. Schmidt, M., Esteban, R., Gonzalez-Tudela, A., Giedke, G. & Aizpurua, J. QED description of Raman scattering from molecules in plasmonic cavities. Preprint at http://arXiv.org/abs/1509.03851 (2015).

Download references

Acknowledgements

The authors thank P. Fischer, H.-H. Jeong, V. Sudhir, D. Wilson and E. Verhagen for discussions and C. Corminboeuf and E. Bremond for help with running the chemical simulations. This work was partially supported by an ERC Advanced Grant (QREM), the NCCR of Quantum Engineering (QSIT) as well as the Swiss National Science Foundation. P.R. acknowledges the support of the Max Planck-EPFL Center for Molecular Nanoscience and Technology. C.G. acknowledges the support of the Swiss National Science Foundation through an Ambizione Fellowship. N.P. acknowledges the support of a Marie-Curie Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

P.R., C.G. and T.J.K. conceived the study. P.R. and C.G. developed the model and performed the calculations. P.R., C.G. and T.J.K. co-wrote the paper. All authors discussed and analysed the results.

Corresponding authors

Correspondence to Christophe Galland or Tobias J. Kippenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roelli, P., Galland, C., Piro, N. et al. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering. Nature Nanotech 11, 164–169 (2016). https://doi.org/10.1038/nnano.2015.264

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.264

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing