Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiwalled nanotube faceting unravelled

Abstract

Nanotubes show great promise for miniaturizing advanced technologies. Their exceptional physical properties are intimately related to their morphological and crystal structure. Circumferential faceting of multiwalled nanotubes reinforces their mechanical strength and alters their tribological and electronic properties. Here, the nature of this important phenomenon is fully rationalized in terms of interlayer registry patterns. Regardless of the nanotube identity (that is, diameter, chirality, chemical composition), faceting requires the matching of the chiral angles of adjacent layers. Above a critical diameter that corresponds well with experimental results, achiral multiwalled nanotubes display evenly spaced extended axial facets whose number equals the interlayer difference in circumferential unit cells. Elongated helical facets, commonly observed in experiment, appear in nanotubes that exhibit small interlayer chiral angle mismatch. When the wall chiralities are uncorrelated, faceting is suppressed and outer layer corrugation, which is induced by the Moiré superlattice, is obtained in agreement with experiments. Finally, we offer an explanation for the higher incidence of faceting in multiwalled boron nitride nanotubes with respect to their carbon-based counterparts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relaxed achiral DWNT geometries and LRI patterns.
Figure 2: Relaxed chiral DWBNNT geometries, LRI patterns and interlayer distance.
Figure 3: Planar mapping of DWNT registry patterns.

Similar content being viewed by others

References

  1. Liu, M. & Cowley, J. M. Structures of the helical carbon nanotubes. Carbon 32, 393–403 (1994).

    Article  CAS  Google Scholar 

  2. Gogotsi, Y., Libera, J. A., Kalashnikov, N. & Yoshimura, M. Graphite polyhedral crystals. Science 290, 317–320 (2000).

    Article  CAS  Google Scholar 

  3. Zhang, G., Jiang, X. & Wang, E. Tubular graphite cones. Science 300, 472–474 (2003).

    Article  CAS  Google Scholar 

  4. Zhang, G. Y., Bai, X. D., Wang, E. G., Guo, Y. & Guo, W. Monochiral tubular graphite cones formed by radial layer-by-layer growth. Phys. Rev. B 71, 113411 (2005).

    Article  Google Scholar 

  5. Celik-Aktas, A., Zuo, J. M., Stubbins, J. F., Tang, C. C. & Bando, Y. Double-helix structure in multiwall boron nitride nanotubes. Acta Crystallogr. Sect. A 61, 533–541 (2005).

    Article  Google Scholar 

  6. Golberg, D., Mitome, M., Bando, Y., Tang, C. C. & Zhi, C. Y. Multi-walled boron nitride nanotubes composed of diverse cross-section and helix type shells. Appl. Phys. A 88, 347–352 (2007).

    Article  CAS  Google Scholar 

  7. Garel, J. et al. Ultrahigh torsional stiffness and strength of boron nitride nanotubes. Nano Lett. 12, 6347–6352 (2012).

    Article  CAS  Google Scholar 

  8. Garel, J. et al. BCN nanotubes as highly sensitive torsional electromechanical transducers. Nano Lett. 14, 6132–6137 (2014).

    Article  CAS  Google Scholar 

  9. Nigues, A., Siria, A., Vincent, P., Poncharal, P. & Bocquet, L. Ultrahigh interlayer friction in multiwalled boron nitride nanotubes. Nat. Mater. 13, 688–693 (2014).

    Article  CAS  Google Scholar 

  10. Golberg, D. et al. Boron nitride nanotubes and nanosheets. ACS Nano 4, 2979–2993 (2010).

    Article  CAS  Google Scholar 

  11. De Volder, M. F. L., Tawfick, S. H., Baughman, R. H. & Hart, A. J. Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013).

    Article  CAS  Google Scholar 

  12. Arash, B., Wang, Q. & Varadan, V. K. Mechanical properties of carbon nanotube/polymer composites. Sci. Rep. 4, 6479 (2014).

    Article  CAS  Google Scholar 

  13. Yoon, M., Howe, J., Tibbetts, G., Eres, G. & Zhang, Z. Polygonization and anomalous graphene interlayer spacing of multi-walled carbon nanofibers. Phys. Rev. B 75, 165402 (2007).

    Article  Google Scholar 

  14. Golovaty, D. & Talbott, S. Continuum model of polygonization of carbon nanotubes. Phys. Rev. B 77, 081406(R) (2008).

    Article  Google Scholar 

  15. Tibbetts, K., Doe, R. & Ceder, G. Polygonal model for layered inorganic nanotubes. Phys. Rev. B 80, 014102 (2009).

    Article  Google Scholar 

  16. Mu, W., Zhang, G. & Ou-Yang, Z. Spontaneous polygonization of multiwalled carbon nanotubes: perturbation analysis. Jpn. J. Appl. Phys. 51, 065101 (2012).

    Article  Google Scholar 

  17. Palser, A. H. R. Interlayer interactions in graphite and carbon nanotubes. Phys. Chem. Chem. Phys. 1, 4459–4464 (1999).

    Article  CAS  Google Scholar 

  18. Hod, O. Quantifying the stacking registry matching in layered materials. Isr. J. Chem. 50, 506–514 (2010).

    Article  CAS  Google Scholar 

  19. Koshino, M., Moon, P. & Son, Y.-W. Incommensurate double-walled carbon nanotubes as one-dimensional moiré crystals. Phys. Rev. B 91, 035405 (2015).

    Article  Google Scholar 

  20. Kolmogorov, A. N. & Crespi, V. H. Smoothest bearings: interlayer sliding in multiwalled carbon nanotubes. Phys. Rev. Lett. 85, 4727–4730 (2000).

    Article  CAS  Google Scholar 

  21. Hashimoto, A. et al. Atomic correlation between adjacent graphene layers in double-wall carbon nanotubes. Phys. Rev. Lett. 94, 045504 (2005).

    Article  Google Scholar 

  22. Schouteden, K., Volodin, A., Li, Z. & Van Haesendonck, C. Atomically resolved Moiré-type superstructures in double-walled carbon nanotubes. Carbon 61, 379–385 (2013).

    Article  CAS  Google Scholar 

  23. Hod, O. Graphite and hexagonal boron-nitride have the same interlayer distance. Why? J. Chem. Theory and Comput. 8, 1360–1369 (2012).

    Article  CAS  Google Scholar 

  24. Golberg, D. et al. Fine structure of boron nitride nanotubes produced from carbon nanotubes by a substitution reaction. J. Appl. Phys. 86, 2364–2366 (1999).

    Article  CAS  Google Scholar 

  25. Golberg, D., Bando, Y., Kurashima, K. & Sato, T. Ropes of BN multi-walled nanotubes. Solid State Commun. 116, 1–6 (2000).

    Article  CAS  Google Scholar 

  26. Celik-Aktas, A., Zuo, J. M., Stubbins, J. F., Tang, C. & Bando, Y. Structure and chirality distribution of multiwalled boron nitride nanotubes. Appl. Phys. Lett. 86, 133110 (2005).

    Article  Google Scholar 

  27. Xu, Z., Bai, X., Wang, Z. L. & Wang, E. Multiwall carbon nanotubes made of monochirality graphite shells. J. Am. Chem. Soc. 128, 1052–1053 (2006).

    Article  CAS  Google Scholar 

  28. Zuo, J. M., Vartanyants, I., Gao, M., Zhang, R. & Nagahara, L. A. Atomic resolution imaging of a carbon nanotube from diffraction intensities. Science 300, 1419–1421 (2003).

    Article  CAS  Google Scholar 

  29. Li, F. et al. Identification of the constituents of double-walled carbon nanotubes using Raman spectra taken with different laser-excitation energies. J. Mater. Res. 18, 1251–1258 (2003).

    Article  CAS  Google Scholar 

  30. Koziol, K., Shaffer, M. & Windle, A. Three-dimensional internal order in multiwalled carbon nanotubes grown by chemical vapor deposition. Adv. Mater. 17, 760–763 (2005).

    Article  CAS  Google Scholar 

  31. Ducati, C. et al. Crystallographic order in multi-walled carbon nanotubes synthesized in the presence of nitrogen. Small 2, 774–784 (2006).

    Article  CAS  Google Scholar 

  32. Hirahara, K. et al. Chirality correlation in double-wall carbon nanotubes as studied by electron diffraction. Phys. Rev. B 73, 195420 (2006).

    Article  Google Scholar 

  33. Gao, M., Zuo, J. M., Zhang, R. & Nagahara, L. A. Structure determinations of double-wall carbon nanotubes grown by catalytic chemical vapor deposition. J. Mater. Sci. 41, 4382–4388 (2006).

    Article  CAS  Google Scholar 

  34. Guan, L., Suenaga, K. & Iijima, S. Smallest carbon nanotube assigned with atomic resolution accuracy. Nano Lett. 8, 459–462 (2008).

    Article  CAS  Google Scholar 

  35. Guo, W. & Guo, Y. Energy optimum chiralities of multiwalled carbon nanotubes. J. Am. Chem. Soc. 129, 2730–2731 (2007).

    Article  CAS  Google Scholar 

  36. Liu, K. H. et al. Van der Waals-coupled electronic states in incommensurate double-walled carbon nanotubes. Nat. Phys. 10, 737–742 (2014).

    Article  CAS  Google Scholar 

  37. Tersoff, J. Modeling solid-state chemistry—interatomic potentials for multicomponent systems. Phys. Rev. B 39, 5566–5568 (1989).

    Article  CAS  Google Scholar 

  38. Stuart, S. J., Tutein, A. B. & Harrison, J. A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472 (2000).

    Article  CAS  Google Scholar 

  39. Lindsay, L. & Broido, D. A. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 81, 205441 (2010).

    Article  Google Scholar 

  40. Kolmogorov, A. N. & Crespi, V. H. Registry-dependent interlayer potential for graphitic systems. Phys. Rev. B 71, 235415 (2005).

    Article  Google Scholar 

  41. Sevik, C., Kinaci, A., Haskins, J. B. & Çağın, T. Characterization of thermal transport in low-dimensional boron nitride nanostructures. Phys. Rev. B 84, 085409 (2011).

    Article  Google Scholar 

  42. Leven, I., Azuri, I., Kronik, L. & Hod, O. Inter-layer potential for hexagonal boron nitride. J. Chem. Phys. 140, 104106 (2014).

    Article  Google Scholar 

  43. Marom, N. et al. Stacking and registry effects in layered materials: the case of hexagonal boron nitride. Phys. Rev. Lett. 105, 046801 (2010).

    Article  Google Scholar 

  44. Hod, O. Interlayer commensurability and superlubricity in rigid layered materials. Phys. Rev. B 86, 075444 (2012).

    Article  Google Scholar 

  45. Hod, O. The registry index: a quantitative measure of materials’ interfacial commensurability. ChemPhysChem 14, 2376–2391 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

O.H. acknowledges the Lise-Meitner Minerva Center for Computational Quantum Chemistry and the Center for Nanoscience and Nanotechnology at Tel-Aviv University for their generous financial support. Work in Trieste was carried out under ERC Grant 320796 MODPHYSFRICT. EU COST Action MP1303 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

I.L. and R.G. coded the relevant force-fields, performed the geometry optimizations and actively participated in the analysis of the results and the writing of the manuscript. I.L. and O.H. coded the unrolled nanotube registry pattern analysis tool and analysed the corresponding results. E.T., A.V. and O.H. guided the research and data analysis and led the writing of the manuscript.

Corresponding author

Correspondence to Oded Hod.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1357 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leven, I., Guerra, R., Vanossi, A. et al. Multiwalled nanotube faceting unravelled. Nature Nanotech 11, 1082–1086 (2016). https://doi.org/10.1038/nnano.2016.151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing