Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A semiconductor photon-sorter

Abstract

Obtaining substantial nonlinear effects at the single-photon level is a considerable challenge that holds great potential for quantum optical measurements and information processing. Of the progress that has been made in recent years1,2,3,4,5 one of the most promising methods is to scatter coherent light from quantum emitters, imprinting quantum correlations onto the photons. We report effective interactions between photons, controlled by a single semiconductor quantum dot that is weakly coupled to a monolithic cavity. We show that the nonlinearity of a transition modifies the counting statistics of a Poissonian beam, sorting the photons in number. This is used to create strong correlations between detection events and to create polarization-correlated photons from an uncorrelated stream using a single spin. These results pave the way for semiconductor optical switches operated by single quanta of light.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Using a two-level system (TLS) to control single photons.
Figure 2: Resonance fluorescence without polarization filtering.
Figure 3: Photon sorting by number.
Figure 4: Photon sorting by polarization with a single spin.

Similar content being viewed by others

References

  1. Fushman, I. et al. Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008).

    Article  CAS  Google Scholar 

  2. Reinhard, A. et al. Strongly correlated photons on a chip. Nature Photon. 6, 93–96 (2011).

    Article  Google Scholar 

  3. Shomroni, I. et al. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903–906 (2014).

    Article  CAS  Google Scholar 

  4. Tieke, T. G. et al. Nanophotonic quantum phase switch with a single atom. Nature 508, 241–245 (2014).

    Article  Google Scholar 

  5. Javadi, A. et al. Single-photon non-linear optics with a quantum dot in a waveguide. Nature Commun. 6, 8655 (2015).

    Article  CAS  Google Scholar 

  6. Hecht, J. Understanding Fiber Optics (Laser Light Press, 1993).

  7. Kwiat, P. G. et al. New high-intensity source of polarisation-entangled photon pairs. Phys. Rev. Lett. 75, 4667–4671 (1995).

    Article  Google Scholar 

  8. Parigi, V., Zavatta, A., Kim, M. & Bellini, M. Probing quantum commutation rules by addition and subtraction of single photons to/from a light field. Science 317, 1890–1893 (2007).

    Article  CAS  Google Scholar 

  9. Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J. & Grangier, P. Generating optical Schrödinger kittens for quantum information processing. Science 312, 83–86 (2006).

    Article  CAS  Google Scholar 

  10. Shen, J.-T. & Fan, S. Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system. Phys. Rev. Lett. 98, 153003 (20070).

    Article  Google Scholar 

  11. Chang, D. E., Sørensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).

    Article  CAS  Google Scholar 

  12. Hu, C. Y., Young, A., O'Brien, J. L., Munro, W. J. & Rarity, J. G. Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008).

    Article  Google Scholar 

  13. Gazzano, O. et al. Bright solid-state sources of indistinguishable single photons. Nature Commun. 73, 1425 (2013).

    Article  Google Scholar 

  14. Hu, C. Y., Munro, W. J. & Rarity, J. G. Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B 78, 125318 (2008).

    Article  Google Scholar 

  15. Bonato, C. et al. CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010).

    Article  Google Scholar 

  16. Witthaut, D., Lukin, M. D. & Sorensen, A. S. Photon sorters and QND detectors using single photon emitters. Europhys. Lett. 97, 50007 (2012).

    Article  Google Scholar 

  17. Ralph, T. C., Söllner, I., Mahmoodian, S., White, A. G. & Lodahl, P. Photon sorting, efficient bell measurements, and a deterministic controlled-Z gate using a passive two-level nonlinearity. Phys. Rev. Lett. 114, 173603 (2015).

    Article  CAS  Google Scholar 

  18. Hwang, J. et al. A single-molecule optical transistor. Nature 460, 76–80 (2009).

    Article  CAS  Google Scholar 

  19. Mascarenhas, E., Santos, M. F., Auffeves, A. & Gerace, D. A quantum rectifier in a one-dimensional photonic channel. Preprint at http://arxiv.org/abs/1510.01472 (2015).

  20. Firstenberg, O. et al. Attractive photons in a quantum nonlinear medium. Nature 502, 71–75 (2013).

    Article  CAS  Google Scholar 

  21. Nguyen, H. S. et al. Optically gated resonant emission of single quantum dots. Phys. Rev. Lett. 108, 057401 (2012).

    Article  CAS  Google Scholar 

  22. Matthiesen, C. et al. Phase-locked indistinguishable photons with synthesized waveforms from a solid-state source. Nature Commun. 4, 1600 (2013).

    Article  Google Scholar 

  23. Moreau, E. et al. Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities. Appl. Phys. Lett. 79, 2865–2867 (2001).

    Article  CAS  Google Scholar 

  24. Konthasinghe, K. et al. Coherent versus incoherent light scattering from a quantum dot. Phys. Rev. B 85, 235315 (2012).

    Article  Google Scholar 

  25. Plakhotnik, T. & Palm, V. Interferometric signatures of single molecules. Phys. Rev. Lett. 87, 183602 (2001).

    Article  Google Scholar 

  26. Wrigge, G., Gerhardt, I., Hwang, J., Zumofen, G. & Sandoghdar, V. Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nature Phys. 4, 60–64 (2008).

    Article  CAS  Google Scholar 

  27. Heiss, D. et al. Observation of extremely slow hole spin relaxation in self-assembled quantum dots. Phys. Rev. B 76, 241306(R) (2007).

    Article  Google Scholar 

  28. Pinotsi, D. & Imamoglu, A. Single photon absorption by a single quantum emitter. Phys. Rev. Lett. 100, 093603 (2008).

    Article  CAS  Google Scholar 

  29. Zumfoen, G., Mojarad, N. M., Sandoghdar, V. & Agio, M . Perfect reflection of light by an oscillating dipole. Phys. Rev. Lett. 101, 180404 (2008).

    Article  Google Scholar 

  30. DeGreve, K. et al. Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nature Phys. 7, 872–878 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The EPSRC partly funded the MBE machine used to grow the sample. J.P.L. acknowledges support from the EPSRC CDT in Photonic Systems Development.

Author information

Authors and Affiliations

Authors

Contributions

The sample was grown by I.F. and D.A.R., and processed by D.J.P.E. The optical measurements were carried out by J.P.L. and A.J.B. A.J.B. and A.J.S. conceived the experiment and guided the work. A.J.B. wrote the manuscipt with input from all the authors.

Corresponding author

Correspondence to A. J. Bennett.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 394 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, A., Lee, J., Ellis, D. et al. A semiconductor photon-sorter. Nature Nanotech 11, 857–860 (2016). https://doi.org/10.1038/nnano.2016.113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.113

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing