Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Field-free switching of perpendicular magnetization through spin–orbit torque in antiferromagnet/ferromagnet/oxide structures

Abstract

Spin–orbit torques arising from the spin–orbit coupling of non-magnetic heavy metals allow electrical switching of perpendicular magnetization. However, the switching is not purely electrical in laterally homogeneous structures. An extra in-plane magnetic field is indeed required to achieve deterministic switching, and this is detrimental for device applications. On the other hand, if antiferromagnets can generate spin–orbit torques, they may enable all-electrical deterministic switching because the desired magnetic field may be replaced by their exchange bias. Here we report sizeable spin–orbit torques in IrMn/CoFeB/MgO structures. The antiferromagnetic IrMn layer also supplies an in-plane exchange bias field, which enables all-electrical deterministic switching of perpendicular magnetization without any assistance from an external magnetic field. Together with sizeable spin–orbit torques, these features make antiferromagnets a promising candidate for future spintronic devices. We also show that the signs of the spin–orbit torques in various IrMn-based structures cannot be explained by existing theories and thus significant theoretical progress is required.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The sign of spin–orbit torques and field-free switching in the Ta(5 nm)/IrMn(9 nm)/CoFeB/MgO sample.
Figure 2: Field-free spin–orbit torque switching in the Ta(5 nm)/CoFeB(3 nm)/IrMn(3 nm)/CoFeB/MgO sample.
Figure 3: Field-free spin–orbit torque switching in the Ta(5 nm)/CoFeB(3 nm)/Ta(3 nm)/CoFeB/MgO samples.
Figure 4: The sign of spin–orbit torque in the Ta(5 nm)/Ti(5 nm)/IrMn(5 nm)/Ti(tTi)/CoFeB/MgO samples.

Similar content being viewed by others

References

  1. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  Google Scholar 

  2. Duine, R. Spintronics: an alternating alternative. Nature Mater. 10, 344–345 (2011).

    Article  CAS  Google Scholar 

  3. Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nature Mater. 13, 367–374 (2014).

    Article  CAS  Google Scholar 

  4. Satoh, T. et al. Spin oscillations in antiferromagnetic NiO triggered by circularly polarized light. Phys. Rev. Lett. 105, 077402 (2010).

    Article  Google Scholar 

  5. Nogués, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

    Article  Google Scholar 

  6. Núñez, A. S., Duine, R. A., Haney, P. & MacDonald, A. H. Theory of spin torques and giant magnetoresistance in antiferromagnetic metals. Phys. Rev. B 73, 214426 (2006).

    Article  Google Scholar 

  7. Wei, Z. et al. Changing exchange bias in spin valves with an electric current. Phys. Rev. Lett. 98, 116603 (2007).

    Article  CAS  Google Scholar 

  8. Urazhdin, S. & Anthony, N. Effect of polarized current on the magnetic state of an antiferromagnet. Phys. Rev. Lett. 99, 046602 (2007).

    Article  Google Scholar 

  9. Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nature Mater. 10, 347–351 (2011).

    Article  CAS  Google Scholar 

  10. Wang, Y. Y. et al. Room-temperature perpendicular exchange coupling and tunneling anisotropic magnetoresistance in an antiferromagnet-based tunnel junction. Phys. Rev. Lett. 109, 137201 (2012).

    Article  CAS  Google Scholar 

  11. Mendes, J. B. S. et al. Large inverse spin Hall effect in the antiferromagnetic metal Ir20Mn80 . Phys. Rev. B 89, 140406(R) (2014).

    Article  Google Scholar 

  12. Zhang, W. et al. Spin Hall effects in metallic antiferromagnets. Phys. Rev. Lett. 113, 196602 (2014).

    Article  Google Scholar 

  13. Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    Article  Google Scholar 

  14. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  CAS  Google Scholar 

  15. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    Article  Google Scholar 

  16. Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nature Nanotech. 8, 527–533 (2013).

    Article  CAS  Google Scholar 

  17. Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nature Mater. 12, 611–616 (2013).

    Article  CAS  Google Scholar 

  18. Yu, G. et al. Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields. Nature Nanotech. 9, 548–554 (2014).

    Article  CAS  Google Scholar 

  19. Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. Nature Mater. 12, 240–245 (2013).

    Article  CAS  Google Scholar 

  20. Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nature Nanotech. 8, 587–593 (2013).

    Article  CAS  Google Scholar 

  21. Taniguchi, T., Grollier, J. & Stiles, M. D. Spin-transfer torques generated by the anomalous Hall effect and anisotropic magnetoresistance. Phys. Rev. Appl. 3, 044001 (2015).

    Article  Google Scholar 

  22. Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35A, 459–460 (1971).

    Article  Google Scholar 

  23. Wang, X. & Manchon, A. Diffusive spin dynamics in ferromagnetic thin films with a Rashba interaction. Phys. Rev. Lett. 108, 117201 (2012).

    Article  Google Scholar 

  24. Kim, K.-W., Seo, S.-M., Ryu, J., Lee, K.-J. & Lee, H.-W. Magnetization dynamics induced by in-plane currents in ultrathin magnetic nanostructures with Rashba spin-orbit coupling. Phys. Rev. B 85, 180404(R) (2012).

    Article  Google Scholar 

  25. Pesin, D. A. & MacDonald, A. H. Quantum kinetic theory of current-induced torques in Rashba ferromagnets. Phys. Rev. B 86, 014416 (2012).

    Article  Google Scholar 

  26. van der Bijl, E. & Duine, R. A. Current-induced torques in textured Rashba ferromagnets. Phys. Rev. B 86, 094406 (2012).

    Article  Google Scholar 

  27. Kurebayashi, H. et al. An antidamping spin-orbit torque originating from the Berry curvature. Nature Nanotech. 9, 211–217 (2014).

    Article  CAS  Google Scholar 

  28. Qiu, X. et al. Spin-orbit-torque engineering via oxygen manipulation. Nature Nanotech. 10, 333–338 (2015).

    Article  CAS  Google Scholar 

  29. Železný, J. et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 113, 157201 (2014).

  30. Takei, S., Moriyama, T., Ono, T. & Tserkovnyak, Y. Antiferromagnet-mediated spin transfer between a metal and a ferromagnet. Phys. Rev. B 92, 020409(R) (2015).

    Article  Google Scholar 

  31. Moriyama, T. et al. Spin–transfer–torque through antiferromagnetic IrMn. Preprint at http://arxiv.org/abs/1411.4100 (2014).

  32. Fan, X. et al. Quantifying interface and bulk contributions to spin-orbit torque in magnetic bilayers. Nature Commun. 5, 3042 (2014).

    Article  Google Scholar 

  33. Fukami, S., Zhang, C., DuttaGupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin-orbit torque in an antiferromagnet/ferromagnet bilayer system. Nature Mater. 15, 535–541 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge R. D. McMichael, M. D. Stiles, J. McClelland, and S.-B. Choe for critical reading of the manuscript. This work was supported by Creative Materials Discovery Program through the National Research Foundation of Korea (NRF-2015M3D1A1070465). Further financial support from the NRF was provided to B.-G.P. (NRF-2014R1A2A1A11051344), K.-J.L. (NRF-2013R1A2A2A01013188), H.-W.L. (NRF-2013R1A2A2A05006237) and J-R.J. (NRF-2013R1A2A2A01067144). B.-C.M. was awarded financial support from the KIST institutional programme (2E26380).

Author information

Authors and Affiliations

Authors

Contributions

B.-G.P. and K.-J.L. planned and supervised the study. Y.-W.O. and S.-H.C.B. fabricated the devices with help from Y.M.K., H.Y.L. and C.-G.Y. Y.-W.O. and S.-H.C.B. measured spin–orbit torques with help from K.-D.L., E.-S.P., B.-C.M., K.-S.L. and J.-R.J. K.-W.K., G.G., H.-W.L., K.-J.L. and B.-G.P. analysed the results. K.-J.L. and B.-G.P. wrote the manuscript with the help of Y.M.K., K.-W.K. and H.-W.L.

Corresponding authors

Correspondence to Kyung-Jin Lee or Byong-Guk Park.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2589 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, YW., Chris Baek, Sh., Kim, Y. et al. Field-free switching of perpendicular magnetization through spin–orbit torque in antiferromagnet/ferromagnet/oxide structures. Nature Nanotech 11, 878–884 (2016). https://doi.org/10.1038/nnano.2016.109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.109

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing