Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

All-dielectric metamaterials

Abstract

The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of isotropic and anisotropic all-dielectric metamaterials.
Figure 2: High-index resonators.
Figure 3: Coupled all-dielectric resonators.
Figure 4: All-dielectric metasurfaces.
Figure 5: All-dielectric zero-index metamaterials (ZIMs).
Figure 6: Surface waves on all-dielectric media.
Figure 7: Transparent subdiffraction photonics.

Similar content being viewed by others

References

  1. Maier, S. A. & Atwater, H. A. Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005).

    Google Scholar 

  2. Kittel, C. Introduction to Solid State Physics (Wiley, 2004).

    Google Scholar 

  3. Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photon. 5, 523–530 (2011).

    CAS  Google Scholar 

  4. Schuller, J. A., Zia, R., Taubner, T. & Brongersma, M. L. Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. Phys. Rev. Lett. 99, 107401 (2007).

    Google Scholar 

  5. Grigorenko, A. N. et al. Nanofabricated media with negative permeability at visible frequencies. Nature 438, 335–338 (2005).

    CAS  Google Scholar 

  6. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    CAS  Google Scholar 

  7. Silveirinha, M. & Engheta, N. Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media. Phys. Rev. B 75, 075119 (2007).

    Google Scholar 

  8. Hentschel, M., Schäferling, M., Weiss, T., Liu, N. & Giessen, H. Three-dimensional chiral plasmonic oligomers. Nano Lett. 12, 2542–2547 (2012).

    CAS  Google Scholar 

  9. Plum, E. et al. Metamaterial with negative index due to chirality. Phys. Rev. B 79, 035407 (2009).

    Google Scholar 

  10. Krishnamoorthy, H. N. S., Jacob, Z., Narimanov, E., Kretzschmar, I. & Menon, V. M. Topological transitions in metamaterials. Science 336, 205–209 (2012).

    CAS  Google Scholar 

  11. Cai, W. & Shalaev, V. Optical Metamaterials: Fundamentals and Applications (Springer Science and Business Media, 2009).

    Google Scholar 

  12. Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nature Mater. 11, 917–924 (2012).

    CAS  Google Scholar 

  13. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light 2nd edn (Princeton Univ. Press, 2011).

    Google Scholar 

  14. Lewin, L. The electrical constants of a material loaded with spherical particles. J. Inst. Electr. Eng. Part III Radio Commun. Eng. 94, 65–68 (1947).

    Google Scholar 

  15. Evlyukhin, A. B. et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 12, 3749–3755 (2012).

    CAS  Google Scholar 

  16. Kuznetsov, A. I., Miroshnichenko, A. E., Fu, Y. H., Zhang, J. & Luk'yanchuk, B. Magnetic light. Sci. Rep. 2, 492 (2012).

    Google Scholar 

  17. Staude, I. et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 7, 7824–7832 (2013).

    CAS  Google Scholar 

  18. Huang, X., Lai, Y., Hang, Z. H., Zheng, H. & Chan, C. T. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nature Mater. 10, 582–586 (2011). This paper proposes an all-dielectric zero-index medium without using plasmonic components.

    CAS  Google Scholar 

  19. Moitra, P. et al. Realization of an all-dielectric zero-index optical metamaterial. Nature Photon. 7, 791–795 (2013). This paper reports the first experimental realization of an all-dielectric zero-index metamaterial at optical frequencies.

    CAS  Google Scholar 

  20. Liu, S. et al. Optical magnetic mirrors without metals. Optica 1, 250–256 (2014).

    CAS  Google Scholar 

  21. Pfeiffer, C. & Grbic, A. Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 110, 197401 (2013).

    Google Scholar 

  22. Decker, M. et al. High-efficiency dielectric Huygens' surfaces. Adv. Opt. Mater. 3, 813–820 (2015). This paper demonstrates that overlapping electric and magnetic resonances of equal strength can lead to highly directional and efficient Huygens sources.

    CAS  Google Scholar 

  23. Alù, A., Silveirinha, M. G., Salandrino, A. & Engheta, N. Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys. Rev. B 75, 155410 (2007).

    Google Scholar 

  24. Yang, Y., Kravchenko, I. I., Briggs, D. P. & Valentine, J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nature Commun. 5, 5753 (2014).

    CAS  Google Scholar 

  25. Wu, C. et al. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nature Commun. 5, 3892 (2014).

    CAS  Google Scholar 

  26. Zhang, J., Liu, W., Zhu, Z., Yuan, X. & Qin, S. Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators. Opt. Express 22, 30889–30898 (2014).

    Google Scholar 

  27. Kim, S. J., Fan, P., Kang, J.-H. & Brongersma, M. L. Creating semiconductor metafilms with designer absorption spectra. Nature Commun. 6, 7591 (2015).

    CAS  Google Scholar 

  28. Bakker, R. M. et al. Magnetic and electric hotspots with silicon nanodimers. Nano Lett. 15, 2137–2142 (2015). This paper explains the fundamental difference in hotspots created by plasmonic and all-dielectric silicon nanodimers.

    CAS  Google Scholar 

  29. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nature Mater. 13, 139–150 (2014).

    CAS  Google Scholar 

  30. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Google Scholar 

  31. Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014). This manuscript reports wavefront and polarization manipulation of light using all-dielectric silicon based metasurfaces.

    CAS  Google Scholar 

  32. Aieta, F., Kats, M. A., Genevet, P. & Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015).

    CAS  Google Scholar 

  33. Dyakonov, M. I. New type of electromagnetic wave propagating at an interface. Sov. Phys. JETP 67, 714–716 (1988).

    Google Scholar 

  34. Artigas, D. & Torner, L. Dyakonov surface waves in photonic metamaterials. Phys. Rev. Lett. 94, 013901 (2005).

    Google Scholar 

  35. Takayama, O., Artigas, D. & Torner, L. Lossless directional guiding of light in dielectric nanosheets using Dyakonov surface waves. Nature Nanotech. 9, 419–424 (2014). This paper reports the observation and control of Dyakonov surface waves in nanometre-thick films sandwiched between a biaxial crystal and an isotropic liquid cladding.

    CAS  Google Scholar 

  36. Jahani, S. & Jacob, Z. Transparent subdiffraction optics: nanoscale light confinement without metal. Optica 1, 96–100 (2014). This paper demonstrates a light confinement strategy beyond the diffraction limit by altering total internal reflection and evanescent wave skin-depth engineering.

    CAS  Google Scholar 

  37. Jahani, S. & Jacob, Z. Photonic skin-depth engineering. J. Opt. Soc. Am. B 32, 1346–1353 (2015).

    Google Scholar 

  38. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).

    Google Scholar 

  39. Popa, B.-I. & Cummer, S. A. Compact dielectric particles as a building block for low-loss magnetic metamaterials. Phys. Rev. Lett. 100, 207401 (2008).

    Google Scholar 

  40. Peng, L. et al. Experimental observation of left-handed behavior in an array of standard dielectric resonators. Phys. Rev. Lett. 98, 157403 (2007).

    Google Scholar 

  41. Zhao, Q. et al. Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite. Phys. Rev. Lett. 101, 027402 (2008).

    Google Scholar 

  42. Zhao, Q., Zhou, J., Zhang, F. & Lippens, D. Mie resonance-based dielectric metamaterials. Mater. Today 12, 60–69 (December, 2009).

    CAS  Google Scholar 

  43. Zhou, J. et al. Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys. Rev. Lett. 95, 223902 (2005).

    CAS  Google Scholar 

  44. Ahmadi, A. & Mosallaei, H. Physical configuration and performance modeling of all-dielectric metamaterials. Phys. Rev. B 77, 045104 (2008).

    Google Scholar 

  45. Ginn, J. C. et al. Realizing optical magnetism from dielectric metamaterials. Phys. Rev. Lett. 108, 097402 (2012).

    Google Scholar 

  46. Moitra, P. et al. Large-scale all-dielectric metamaterial perfect reflectors. ACS Photon. 2, 692–698 (2015).

    CAS  Google Scholar 

  47. Moitra, P., Slovick, B. A., Yu, Z. G., Krishnamurthy, S. & Valentine, J. Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector. Appl. Phys. Lett. 104, 171102 (2014).

    Google Scholar 

  48. Esfandyarpour, M., Garnett, E. C., Cui, Y., McGehee, M. D. & Brongersma, M. L. Metamaterial mirrors in optoelectronic devices. Nature Nanotech. 9, 542–547 (2014).

    CAS  Google Scholar 

  49. Schwanecke, A. S. et al. Optical magnetic mirrors. J. Opt. Pure Appl. Opt. 9, L1–L2 (2007).

    Google Scholar 

  50. Fedotov, V. A., Rogacheva, A. V., Zheludev, N. I., Mladyonov, P. L. & Prosvirnin, S. L. Mirror that does not change the phase of reflected waves. Appl. Phys. Lett. 88, 091119 (2006).

    Google Scholar 

  51. Sievenpiper, D., Zhang, L., Broas, R. F. J., Alexopolous, N. G. & Yablonovitch, E. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans Microw. Theory 47, 2059–2074 (1999).

    Google Scholar 

  52. Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F. & Luk'yanchuk, B. Directional visible light scattering by silicon nanoparticles. Nature Commun. 4, 1527 (2013). This article demonstrates directional light scattering by spherical silicon nanoparticles in the visible spectral range arising from simultaneous excitation of both electric and magnetic Mie resonances.

    Google Scholar 

  53. Zywietz, U., Evlyukhin, A. B., Reinhardt, C. & Chichkov, B. N. Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses. Nature Commun. 5, 3402 (2014).

    Google Scholar 

  54. Aieta, F. et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932–4936 (2012).

    CAS  Google Scholar 

  55. Liu, W., Miroshnichenko, A. E., Neshev, D. N. & Kivshar, Y. S. Broadband unidirectional scattering by magneto-electric core–shell nanoparticles. ACS Nano 6, 5489–5497 (2012).

    CAS  Google Scholar 

  56. Person, S. et al. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett. 13, 1806–1809 (2013).

    CAS  Google Scholar 

  57. Holloway, C. L., Kuester, E. F., Baker-Jarvis, J. & Kabos, P. A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix. IEEE Trans. Antennas Propag. 51, 2596–2603 (2003).

    Google Scholar 

  58. Nordlander, P., Oubre, C., Prodan, E., Li, K. & Stockman, M. I. Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899–903 (2004).

    CAS  Google Scholar 

  59. Hayashi, S., Koh, R., Ichiyama, Y. & Yamamoto, K. Evidence for surface-enhanced Raman scattering on nonmetallic surfaces: copper phthalocyanine molecules on GaP small particles. Phys. Rev. Lett. 60, 1085–1088 (1988).

    CAS  Google Scholar 

  60. Talley, C. E. et al. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett. 5, 1569–1574 (2005).

    CAS  Google Scholar 

  61. Cao, L., Fan, P. & Brongersma, M. L. Optical coupling of deep-subwavelength semiconductor nanowires. Nano Lett. 11, 1463–1468 (2011).

    CAS  Google Scholar 

  62. Caldarola, M. et al. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nature Commun. 6, 7915 (2015).

    CAS  Google Scholar 

  63. Ko, K. D. et al. Nonlinear optical response from arrays of Au bowtie nanoantennas. Nano Lett. 11, 61–65 (2010).

    Google Scholar 

  64. Savage, K. J. et al. Revealing the quantum regime in tunnelling plasmonics. Nature 491, 574–577 (2012).

    CAS  Google Scholar 

  65. Fan, S. & Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002).

    Google Scholar 

  66. Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Mater. 9, 707–715 (2010).

    CAS  Google Scholar 

  67. Ye, J. et al. Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. Nano Lett. 12, 1660–1667 (2012).

    CAS  Google Scholar 

  68. Miroshnichenko, A. E. & Kivshar, Y. S. Fano resonances in all-dielectric oligomers. Nano Lett. 12, 6459–6463 (2012).

    CAS  Google Scholar 

  69. Zhang, J., MacDonald, K. F. & Zheludev, N. I. Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial. Opt. Express 21, 26721–26728 (2013).

    Google Scholar 

  70. Bharadwaj, P., Deutsch, B. & Novotny, L. Optical antennas. Adv. Opt. Photon. 1, 438–483 (2009).

    Google Scholar 

  71. Piper, J. R. & Fan, S. Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photon. 1, 347–353 (2014).

    CAS  Google Scholar 

  72. Wu, C. et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nature Mater. 11, 69–75 (2012).

    CAS  Google Scholar 

  73. Papakostas, A. et al. Optical manifestations of planar chirality. Phys. Rev. Lett. 90, 107404 (2003).

    CAS  Google Scholar 

  74. Podolskiy, V. A. & Narimanov, E. E. Strongly anisotropic waveguide as a nonmagnetic left-handed system. Phys. Rev. B 71, 201101 (2005).

    Google Scholar 

  75. Pors, A., Nielsen, M. G., Eriksen, R. L. & Bozhevolnyi, S. I. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett. 13, 829–834 (2013).

    CAS  Google Scholar 

  76. Fattal, D., Li, J., Peng, Z., Fiorentino, M. & Beausoleil, R. G. Flat dielectric grating reflectors with focusing abilities. Nature Photon. 4, 466–470 (2010).

    CAS  Google Scholar 

  77. Khorasaninejad, M. et al. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett. 15, 5358–5362 (2015).

    CAS  Google Scholar 

  78. Falcone, F. et al. Babinet principle applied to the design of metasurfaces and metamaterials. Phys. Rev. Lett. 93, 197401 (2004).

    CAS  Google Scholar 

  79. Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotech. 10, 937–943 (2015).

    CAS  Google Scholar 

  80. Shalaev, M. I. et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett. 15, 6261–6266 (2015).

    CAS  Google Scholar 

  81. Gu, Z.-Z. et al. Structural color and the lotus effect. Angew. Chem. Int. Ed. 42, 894–897 (2003).

    CAS  Google Scholar 

  82. Zhu, L., Kapraun, J., Ferrara, J. & Chang-Hasnain, C. J. Flexible photonic metastructures for tunable coloration. Optica 2, 255–258 (2015). This article reports structural colour achieved using flexible, high-contrast grating metasurfaces.

    CAS  Google Scholar 

  83. Zhou, Y., Karagodsky, V., Pesala, B., Sedgwick, F. G. & Chang-Hasnain, C. J. A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings. Opt. Express 17, 1508–1517 (2009).

    CAS  Google Scholar 

  84. Huang, M. C. Y., Zhou, Y. & Chang-Hasnain, C. J. A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nature Photon. 1, 119–122 (2007).

    CAS  Google Scholar 

  85. Zhai, H., Dai, Y. J., Wu, J. Y., Wang, R. Z. & Zhang, L. Y. Experimental investigation and analysis on a concentrating solar collector using linear Fresnel lens. Energ. Convers. Manag. 51, 48–55 (2010).

    CAS  Google Scholar 

  86. Levy, U., Tsai, C.-H., Pang, L. & Fainman, Y. Engineering space-variant inhomogeneous media for polarization control. Opt. Lett. 29, 1718–1720 (2004).

    Google Scholar 

  87. Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. Opt. Lett. 27, 285–287 (2002).

    Google Scholar 

  88. Sauvan, C., Lalanne, P. & Lee, M.-S. L. Broadband blazing with artificial dielectrics. Opt. Lett. 29, 1593–1595 (2004).

    Google Scholar 

  89. Bomzon, Z., Kleiner, V. & Hasman, E. Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt. Lett. 26, 1424–1426 (2001).

    CAS  Google Scholar 

  90. Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141–1143 (2002).

    Google Scholar 

  91. Ni, X., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nature Commun. 4, 2807 (2013).

    Google Scholar 

  92. Piggott, A. Y. et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nature Photon. 9, 374–377 (2015).

    CAS  Google Scholar 

  93. Shen, B., Wang, P., Polson, R. & Menon, R. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nature Photon. 9, 378–382 (2015).

    CAS  Google Scholar 

  94. Shen, B., Wang, P., Polson, R. & Menon, R. Ultra-high-efficiency metamaterial polarizer. Optica 1, 356–360 (2014).

    CAS  Google Scholar 

  95. Huntington, M. D., Lauhon, L. J. & Odom, T. W. Subwavelength lattice optics by evolutionary design. Nano Lett. 14, 7195–7200 (2014).

    CAS  Google Scholar 

  96. Ziolkowski, R. W. Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys. Rev. E 70, 046608 (2004).

    Google Scholar 

  97. Hao, J., Yan, W. & Qiu, M. Super-reflection and cloaking based on zero index metamaterial. Appl. Phys. Lett. 96, 101109 (2010).

    Google Scholar 

  98. Silveirinha, M. & Engheta, N. Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. Phys. Rev. Lett. 97, 157403 (2006).

    Google Scholar 

  99. Mahmoud, A. M. & Engheta, N. Wave–matter interactions in epsilon-and-mu-near-zero structures. Nature Commun. 5, 5638 (2014).

    CAS  Google Scholar 

  100. Li, Y. et al. On-chip zero-index metamaterials. Nature Photon. 9, 738–742 (2015).

    CAS  Google Scholar 

  101. Wang, L.-G., Wang, Z.-G., Zhang, J.-X. & Zhu, S.-Y. Realization of Dirac point with double cones in optics. Opt. Lett. 34, 1510–1512 (2009).

    Google Scholar 

  102. Mei, J., Wu, Y., Chan, C. T. & Zhang, Z.-Q. First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals. Phys. Rev. B 86, 035141 (2012).

    Google Scholar 

  103. Dong, J.-W. et al. Conical dispersion and effective zero refractive index in photonic quasicrystals. Phys. Rev. Lett. 114, 163901 (2015).

    Google Scholar 

  104. Ozbay, E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    CAS  Google Scholar 

  105. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    CAS  Google Scholar 

  106. Zenneck, J. Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie. Ann. Phys. 328, 846–866 (1907).

    Google Scholar 

  107. Sommerfeld, A. Ueber die Fortpflanzung elektrodynamischer Wellen längs eines Drahtes. Ann. Phys. 303, 233–290 (1899).

    Google Scholar 

  108. Akhmanov, S. A., Sukhorukov, A. P. & Khokhlov, R. V. Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Uspekhi 10, 609–636 (1968).

    Google Scholar 

  109. Tomlinson, W. J. Surface wave at a nonlinear interface. Opt. Lett. 5, 323–325 (1980).

    CAS  Google Scholar 

  110. Mikhailov, S. A. & Ziegler, K. New electromagnetic mode in graphene. Phys. Rev. Lett. 99, 016803 (2007).

    CAS  Google Scholar 

  111. Takayama, O., Crasovan, L., Artigas, D. & Torner, L. Observation of Dyakonov surface waves. Phys. Rev. Lett. 102, 043903 (2009).

    Google Scholar 

  112. Jacob, Z. & Narimanov, E. E. Optical hyperspace for plasmons: Dyakonov states in metamaterials. Appl. Phys. Lett. 93, 221109 (2008).

    Google Scholar 

  113. High, A. A. et al. Visible-frequency hyperbolic metasurface. Nature 522, 192–196 (2015).

    CAS  Google Scholar 

  114. Pulsifer, D. P., Faryad, M. & Lakhtakia, A. Observation of the Dyakonov-Tamm wave. Phys. Rev. Lett. 111, 243902 (2013).

    Google Scholar 

  115. Robbie, K. & Brett, M. J. Sculptured thin films and glancing angle deposition: growth mechanics and applications. J. Vac. Sci. Technol. A 15, 1460–1465 (1997).

    CAS  Google Scholar 

  116. Polo, J. A. & Lakhtakia, A. Surface electromagnetic waves: a review. Laser Photon. Rev. 5, 234–246 (2011).

    Google Scholar 

  117. Liscidini, M. & Sipe, J. E. Analysis of Bloch-surface-wave assisted diffraction-based biosensors. J. Opt. Soc. Am. B 26, 279–289 (2009).

    CAS  Google Scholar 

  118. Sinibaldi, A. et al. Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors. Sensor Actuat. B Chem. 174, 292–298 (2012).

    CAS  Google Scholar 

  119. Chen, X.-W., Sandoghdar, V. & Agio, M. Coherent interaction of light with a metallic structure coupled to a single quantum emitter: from superabsorption to cloaking. Phys. Rev. Lett. 110, 153605 (2013).

    Google Scholar 

  120. Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nature Photon. 6, 737–748 (2012).

    CAS  Google Scholar 

  121. Hecht, J. City of Light: The Story of Fiber Optics (Oxford Univ. Press, 2004).

    Google Scholar 

  122. Herzig Sheinfux, H., Kaminer, I., Plotnik, Y., Bartal, G. & Segev, M. Subwavelength multilayer dielectrics: ultrasensitive transmission and breakdown of effective-medium theory. Phys. Rev. Lett. 113, 243901 (2014).

    Google Scholar 

  123. Jahani, S. & Jacob, Z. Breakthroughs in photonics 2014: relaxed total internal reflection. IEEE Photon. J. 7, 1–5 (2015).

    Google Scholar 

  124. Law, D. C. et al. Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems. Sol. Energ. Mater. Sol. Cells 94, 1314–1318 (2010).

    CAS  Google Scholar 

  125. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    CAS  Google Scholar 

  126. Graf, M. et al. Terahertz range quantum well infrared photodetector. Appl. Phys. Lett. 84, 475–477 (2004).

    CAS  Google Scholar 

  127. Sarikaya, M., Tamerler, C., Jen, A. K.-Y., Schulten, K. & Baneyx, F. Molecular biomimetics: nanotechnology through biology. Nature Mater. 2, 577–585 (2003).

    CAS  Google Scholar 

  128. England, G. et al. Bioinspired micrograting arrays mimicking the reverse color diffraction elements evolved by the butterfly Pierella luna. Proc. Natl Acad. Sci. USA 111, 15630–15634 (2014).

    CAS  Google Scholar 

  129. Huang, Y.-F. et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nature Nanotech. 2, 770–774 (2007).

    CAS  Google Scholar 

  130. Sun, C.-H., Jiang, P. & Jiang, B. Broadband moth-eye antireflection coatings on silicon. Appl. Phys. Lett. 92, 061112 (2008).

    Google Scholar 

  131. Spinelli, P., Verschuuren, M. A. & Polman, A. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nature Commun. 3, 692 (2012).

    CAS  Google Scholar 

  132. Jordan, T. M., Partridge, J. C. & Roberts, N. W. Non-polarizing broadband multilayer reflectors in fish. Nature Photon. 6, 759–763 (2012).

    CAS  Google Scholar 

  133. Shen, Y. et al. Optical broadband angular selectivity. Science 343, 1499–1501 (2014).

    CAS  Google Scholar 

  134. Tame, M. S. et al. Quantum plasmonics. Nature Phys. 9, 329–340 (2013).

    CAS  Google Scholar 

  135. Jacob, Z. Quantum plasmonics. MRS Bull. 37, 761–767 (2012).

    CAS  Google Scholar 

  136. Lee, K. G. et al. A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency. Nature Photon. 5, 166–169 (2011).

    CAS  Google Scholar 

  137. Babinec, T. M. et al. A diamond nanowire single-photon source. Nature Nanotech. 5, 195–199 (2010).

    CAS  Google Scholar 

  138. Noginova, N., Barnakov, Y., Li, H. & Noginov, M. A. Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film. Opt. Express 17, 10767–10772 (2009).

    CAS  Google Scholar 

  139. Taminiau, T. H., Karaveli, S., van Hulst, N. F. & Zia, R. Quantifying the magnetic nature of light emission. Nature Commun. 3, 979 (2012).

    Google Scholar 

  140. Greffet, J.-J. et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002).

    CAS  Google Scholar 

  141. Krasnok, A. E., Miroshnichenko, A. E., Belov, P. A. & Kivshar, Y. S. All-dielectric optical nanoantennas. Opt. Express 20, 20599–20604 (2012).

    Google Scholar 

  142. Filonov, D. S. et al. Experimental verification of the concept of all-dielectric nanoantennas. Appl. Phys. Lett. 100, 201113 (2012).

    Google Scholar 

  143. Schmidt, M. K. et al. Dielectric antennas — a suitable platform for controlling magnetic dipolar emission. Opt. Express 20, 13636–13650 (2012).

    CAS  Google Scholar 

  144. Schuller, J. A., Taubner, T. & Brongersma, M. L. Optical antenna thermal emitters. Nature Photon. 3, 658–661 (2009).

    CAS  Google Scholar 

  145. Basu, S., Zhang, Z. M. & Fu, C. J. Review of near-field thermal radiation and its application to energy conversion. Int. J. Energ. Res. 33, 1203–1232 (2009).

    CAS  Google Scholar 

  146. Celanovic, I., Jovanovic, N. & Kassakian, J. Two-dimensional tungsten photonic crystals as selective thermal emitters. Appl. Phys. Lett. 92, 193101 (2008).

    Google Scholar 

  147. Molesky, S., Dewalt, C. J. & Jacob, Z. High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. Opt. Express 21, A96–A110 (2013).

    Google Scholar 

  148. Guler, U., Boltasseva, A. & Shalaev, V. M. Refractory plasmonics. Science 344, 263–264 (2014).

    CAS  Google Scholar 

  149. Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957).

    CAS  Google Scholar 

  150. Yeh, P., Yariv, A. & Hong, C.-S. Electromagnetic propagation in periodic stratified media. I. General theory. J. Opt. Soc. Am. 67, 423–438 (1977).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Helmholtz Alberta Initiative and National Science and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zubin Jacob.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahani, S., Jacob, Z. All-dielectric metamaterials. Nature Nanotech 11, 23–36 (2016). https://doi.org/10.1038/nnano.2015.304

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.304

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing