Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Symmetry and scale orient Min protein patterns in shaped bacterial sculptures

This article has been updated

Abstract

The boundary of a cell defines the shape and scale of its subcellular organization. However, the effects of the cell's spatial boundaries as well as the geometry sensing and scale adaptation of intracellular molecular networks remain largely unexplored. Here, we show that living bacterial cells can be ‘sculpted’ into defined shapes, such as squares and rectangles, which are used to explore the spatial adaptation of Min proteins that oscillate pole-to-pole in rod-shaped Escherichia coli to assist cell division. In a wide geometric parameter space, ranging from 2 × 1 × 1 to 11 × 6 × 1 μm3, Min proteins exhibit versatile oscillation patterns, sustaining rotational, longitudinal, diagonal, stripe and even transversal modes. These patterns are found to directly capture the symmetry and scale of the cell boundary, and the Min concentration gradients scale with the cell size within a characteristic length range of 3–6 μm. Numerical simulations reveal that local microscopic Turing kinetics of Min proteins can yield global symmetry selection, gradient scaling and an adaptive range, when and only when facilitated by the three-dimensional confinement of the cell boundary. These findings cannot be explained by previous geometry-sensing models based on the longest distance, membrane area or curvature, and reveal that spatial boundaries can facilitate simple molecular interactions to result in far more versatile functions than previously understood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Min proteins oscillate along the symmetry axes of E. coli shaped by the ‘cell-sculpting’ technique.
Figure 2: A characteristic range dictates the Min oscillation axis choice.
Figure 3: Robustness and variation of Min patterns in a wide geometric parameter space.
Figure 4: Symmetry selection, gradient scaling and adaptive range in Min patterns.
Figure 5: Numerical simulations of a three-dimensional reaction–diffusion model explain the sensing of symmetry and scale by Min proteins.

Similar content being viewed by others

Change history

  • 25 June 2015

    In the version of this Article previously published online the Methods section was inadvertently omitted. This has been corrected for all versions of the Article.

References

  1. Turing, A. M. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952).

    Article  Google Scholar 

  2. Gierer, A. & Meinhardt, H. A theory of biological pattern formation. Kybernetik 12, 30–39 (1972).

    Article  CAS  Google Scholar 

  3. Meinhardt, H. & de Boer, P. A. J. Pattern formation in Escherichia coli: a model for the pole-to-pole oscillations of Min proteins and the localization of the division site. Proc. Natl Acad. Sci. USA 98, 14202–14207 (2001).

    Article  CAS  Google Scholar 

  4. Huang, K. C., Meir, Y. & Wingreen, N. S. Dynamic structures in Escherichia coli: spontaneous formation of MinE rings and MinD polar zones. Proc. Natl Acad. Sci. USA 100, 12724–12728 (2003).

    Article  CAS  Google Scholar 

  5. Goryachev, A. B. & Pokhilko, A. V. Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity. FEBS Lett. 582, 1437–1443 (2008).

    Article  CAS  Google Scholar 

  6. Kondo, S. & Miura, T. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329, 1616–1620 (2010).

    Article  CAS  Google Scholar 

  7. Halatek, J. & Frey, E. Highly canalized MinD transfer and MinE sequestration explain the rigin of robust MinCDE-protein dynamics. Cell Rep. 1, 741–752 (2012).

    Article  CAS  Google Scholar 

  8. Noorduin, W. L., Grinthal, A., Mahadevan, L. & Aizenberg, J. Rationally designed complex, hierarchical microarchitectures. Science 340, 832–837 (2013).

    Article  CAS  Google Scholar 

  9. Moseley, J. B. & Nurse, P. Cell division intersects with cell geometry. Cell 142, 184–188 (2010).

    Article  CAS  Google Scholar 

  10. Raskin, D. M. & de Boer, P. A. J. Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc. Natl Acad. Sci. USA 96, 4971–4976 (1999).

    Article  CAS  Google Scholar 

  11. Hu, Z. & Lutkenhaus, J. Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol. Microbiol. 34, 82–90 (1999).

    Article  CAS  Google Scholar 

  12. Ben-Jacob, E. Bacterial self-organization: co-enhancement of complexification and adaptability in a dynamic environment. Phil. Trans. R. Soc. Lond. A 361, 1283–1312 (2003).

    Article  Google Scholar 

  13. Männik, J. et al. Robustness and accuracy of cell division in Escherichia coli in diverse cell shapes. Proc. Natl Acad. Sci. USA 109, 6957–6962 (2012).

    Article  Google Scholar 

  14. Young, K. D. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 70, 660–703 (2006).

    Article  Google Scholar 

  15. Hu, Z. & Lutkenhaus, J. Topological regulation of cell division in E. coli: spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid. Mol. Cell 7, 1337–1343 (2001).

    Article  CAS  Google Scholar 

  16. Lackner, L. L., Raskin, D. M. & de Boer, P. A. J. ATP-dependent interactions between Escherichia coli Min proteins and the phospholipid membrane in vitro. J. Bacteriol. 185, 735–749 (2003).

    Article  CAS  Google Scholar 

  17. Loose, M., Fischer-Friedrich, E., Ries, J., Kruse, K. & Schwille, P. Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320, 789–792 (2008).

    Article  CAS  Google Scholar 

  18. Ivanov, V. & Mizuuchi, K. Multiple modes of interconverting dynamic pattern formation by bacterial cell division proteins. Proc. Natl Acad. Sci. USA 107, 8071–8078 (2010).

    Article  CAS  Google Scholar 

  19. Schweizer, J. et al. Geometry sensing by self-organized protein patterns. Proc. Natl Acad. Sci. USA 109, 15283–15288 (2012).

    Article  CAS  Google Scholar 

  20. Zieske, K. & Schwille, P. Reconstitution of self-organizing protein gradients as spatial cues in cell-free systems. eLife 3, e03949 (2014).

    Article  Google Scholar 

  21. Vecchiarelli, A. G., Li, M., Mizuuchi, M. & Mizuuchi, K. Differential affinities of MinD and MinE to anionic phospholipid influence Min patterning dynamics in vitro. Mol. Microbiol. 93, 453–463 (2014).

    Article  CAS  Google Scholar 

  22. Corbin, B. D., Yu, X-C. & Margolin, W. Exploring intracellular space: function of the Min system in round-shaped Escherichia coli. EMBO J. 21, 1998–2008 (2002).

    Article  CAS  Google Scholar 

  23. Varma, A., Huang, K. C. & Young, K. D. The Min system as a general cell geometry detection mechanism: branch lengths in Y-shaped Escherichia coli cells affect Min oscillation patterns and division dynamics. J. Bacteriol. 190, 2106–2117 (2008).

    Article  CAS  Google Scholar 

  24. Renner, L. D. & Weibel, D. B. Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc. Natl Acad. Sci. USA 108, 6264–6269 (2011).

    Article  CAS  Google Scholar 

  25. Typas, A., Banzhaf, M., Gross, C. A. & Vollmer, W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nature Rev. Microbiol. 10, 123–136 (2012).

    Article  CAS  Google Scholar 

  26. Takeuchi, S., DiLuzio, W. R., Weibel, D. B. & Whitesides, G. M. Controlling the shape of filamentous cells of Escherichia coli. Nano Lett. 5, 1819–1823 (2005).

    Article  CAS  Google Scholar 

  27. Männik, J., Driessen, R., Galajda, P., Keymer, J. E. & Dekker, C. Bacterial growth and motility in sub-micron constrictions. Proc. Natl Acad. Sci. USA 106, 14861–14866 (2009).

    Article  Google Scholar 

  28. Cabeen, M. T. et al. Bacterial cell curvature through mechanical control of cell growth. EMBO J. 28, 1208–1219 (2009).

    Article  CAS  Google Scholar 

  29. Fischer-Friedrich, E., Meacci, G., Lutkenhaus, J., Chaté, H. & Kruse, K. Intra- and intercellular fluctuations in Min-protein dynamics decrease with cell length. Proc. Natl Acad. Sci. USA 107, 6134–6139 (2010).

    Article  CAS  Google Scholar 

  30. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    Article  Google Scholar 

  31. Yu, X-C. & Margolin, W. FtsZ ring clusters in min and partition mutants: role of both the Min system and the nucleoid in regulating FtsZ ring localization. Mol. Microbiol. 32, 315–326 (1999).

    Article  CAS  Google Scholar 

  32. Fange, D. & Elf, J. Noise-induced Min phenotypes in E. coli. PLoS Comput. Biol. 2, e80 (2006).

    Article  Google Scholar 

  33. Ben-Zvi, D., Shilo, B-Z., Fainsod, A. & Barkai, N. Scaling of the BMP activation gradient in Xenopus embryos. Nature 453, 1205–1211 (2008).

    Article  CAS  Google Scholar 

  34. Ben-Zvi, D. & Barkai, N. Scaling of morphogen gradients by an expansion-repression integral feedback control. Proc. Natl Acad. Sci. USA 107, 6924–6929 (2010).

    Article  CAS  Google Scholar 

  35. Lauschke, V. M., Tsiairis, C. D., Francois, P. & Aulehla, A. Scaling of embryonic patterning based on phase-gradient encoding. Nature 493, 101–105 (2013).

    Article  Google Scholar 

  36. Averbukh, I., Ben-Zvi, D., Mishra, S. & Barkai, N. Scaling morphogen gradients during tissue growth by a cell division rule. Development 141, 2150–2156 (2014).

    Article  CAS  Google Scholar 

  37. Loose, M., Fischer-Friedrich, E., Herold, C., Kruse, K. & Schwille, P. Min protein patterns emerge from rapid rebinding and membrane interaction of MinE. Nature Struct. Mol. Biol. 18, 577–583 (2011).

    Article  CAS  Google Scholar 

  38. Hoffmann, M. & Schwarz, U. S. Oscillations of Min-proteins in micropatterned environments: a three-dimensional particle-based stochastic simulation approach. Soft Matter 10, 2388–2396 (2014).

    Article  CAS  Google Scholar 

  39. Hsieh, C-W. et al. Direct MinE–membrane interaction contributes to the proper localization of MinDE in E. coli. Mol. Microbiol. 75, 499–512 (2010).

    Article  CAS  Google Scholar 

  40. Park, K-T. et al. The Min oscillator uses MinD-dependent conformational changes in MinE to spatially regulate cytokinesis. Cell 146, 396–407 (2011).

    Article  CAS  Google Scholar 

  41. Leisch, N. et al. Growth in width and FtsZ ring longitudinal positioning in a gammaproteobacterial symbiont. Curr. Biol. 22, R831–R832 (2012).

    Article  CAS  Google Scholar 

  42. Pende, N. et al. Size-independent symmetric division in extraordinarily long cells. Nature Commun. 5, 4803 (2014).

    Article  CAS  Google Scholar 

  43. Vicker, M. G. F-actin assembly in Dictyostelium cell locomotion and shape oscillations propagates as a self-organized reaction-diffusion wave. FEBS Lett. 510, 5–9 (2002).

    Article  CAS  Google Scholar 

  44. Chau, A. H., Walter, J. M., Gerardin, J., Tang, C. & Lim, W. A. Designing synthetic regulatory networks capable of self-organizing cell polarization. Cell 151, 320–332 (2012).

    Article  CAS  Google Scholar 

  45. Shapiro, L., McAdams, H. H. & Losick, R. Why and how bacteria localize proteins. Science 326, 1225–1228 (2009).

    Article  CAS  Google Scholar 

  46. Huang, Z., Pedaci, F., van Oene, M., Wiggin, M. J. & Dekker, N. H. Electron beam fabrication of birefringent microcylinders. ACS Nano 5, 1418–1427 (2011).

    Article  CAS  Google Scholar 

  47. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  Google Scholar 

  48. Wu, F., van Rijn, E., van Schie, B. G. C., Keymer, J. E. & Dekker, C. Multicolor imaging of bacterial nucleoid and division proteins with blue, orange and near-infrared fluorescent proteins. Front. Microbiol. 6, 607 (2015).

    Google Scholar 

  49. Loew, L. M. & Schaff, J. C. The virtual cell: a software environment for computational cell biology. Trends Biotechnol. 19, 401–406 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank E. van Rijn, D. de Graaff, W. Postek, J. van der Does, J. Kerssenmakers and Z. Huang for technical assistance, Y. Caspi, Y-L. Shih, A. Lindert, L. Rothfield, A. Meyer and C. Plesa for materials, E. Frey and J. Halatek for discussions on their model, C. Danelon and F. Hol for discussions, and the CSHL Computational Cell Biology Summer School and VirtualCell (NIH grant P41-GM103313). This work was partly supported by the Netherlands Organisation for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience programme, NanoNextNL programme 3B (F.W.) and European Research Council NanoforBio no. 247072 (C.D.).

Author information

Authors and Affiliations

Authors

Contributions

F.W., J.E.K. and C.D. conceived the experiments, discussed the work and wrote the paper. F.W. and B.v.S performed the experiments. F.W. analysed the data, derived the mechanisms and carried out computer simulations.

Corresponding author

Correspondence to Cees Dekker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 8971 kb)

Supplementary Movie 1

Supplementary Movie 1 (AVI 131 kb)

Supplementary Movie 2

Supplementary Movie 2 (AVI 1605 kb)

Supplementary Movie 3

Supplementary Movie 3 (AVI 425 kb)

Supplementary Movie 4

Supplementary Movie 4 (AVI 1759 kb)

Supplementary Movie 5

Supplementary Movie 5 (AVI 2293 kb)

Supplementary Movie 6

Supplementary Movie 6 (AVI 6953 kb)

Supplementary Movie 7

Supplementary Movie 7 (AVI 1585 kb)

Supplementary Movie 8

Supplementary Movie 8 (AVI 635 kb)

Supplementary Movie 9

Supplementary Movie 9 (AVI 1699 kb)

Supplementary Movie 10

Supplementary Movie 10 (AVI 2296 kb)

Supplementary Movie 11

Supplementary Movie 11 (AVI 131 kb)

Supplementary Movie 12

Supplementary Movie 12 (AVI 1177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., van Schie, B., Keymer, J. et al. Symmetry and scale orient Min protein patterns in shaped bacterial sculptures. Nature Nanotech 10, 719–726 (2015). https://doi.org/10.1038/nnano.2015.126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing