Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Frictional transition from superlubric islands to pinned monolayers

Abstract

The inertial sliding of physisorbed submonolayer islands on crystal surfaces contains unexpected information on the exceptionally smooth sliding state associated with incommensurate superlubricity and on the mechanisms of its disappearance. Here, in a joint quartz crystal microbalance and molecular dynamics simulation case study of Xe on Cu(111), we show how superlubricity emerges in the large size limit of naturally incommensurate Xe islands. As coverage approaches a full monolayer, theory also predicts an abrupt adhesion-driven two-dimensional density compression on the order of several per cent, implying a hysteretic jump from superlubric free islands to a pressurized commensurate immobile monolayer. This scenario is fully supported by the quartz crystal microbalance data, which show remarkably large slip times with increasing submonolayer coverage, signalling superlubricity, followed by a dramatic drop to zero for the dense commensurate monolayer. Careful analysis of this variety of island sliding phenomena will be essential in future applications of friction at crystal/adsorbate interfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The quartz crystal microbalance and characterization of the Cu(111) electrode.
Figure 2: Slip time of Xe on Cu(111) as a function of film coverage.
Figure 3: Spontaneous frictional slowdown of a 60 nm circular island.
Figure 4: Theoretical slip time from sliding simulations for incommensurate Xe islands of growing size, on a perfectly periodic potential representing Cu(111).

Similar content being viewed by others

References

  1. Socoliuc, A., Bennewitz, R., Gnecco, E. & Meyer, E. Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301 (2004).

    Article  CAS  Google Scholar 

  2. Socoliuc, A. et al. Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 313, 207–210 (2006).

    Article  CAS  Google Scholar 

  3. Krylov, S. Y. & Frenken, J. W. M. The physics of atomic-scale friction: basic considerations and open questions. Phys. Status Solidi B 251, 711–736 (2014).

    Article  CAS  Google Scholar 

  4. Vanossi, A., Manini, N., Urbakh, M., Zapperi, S. & Tosatti, E. Colloquium. Modeling friction: from nanoscale to mesoscale. Rev. Mod. Phys. 85, 529–552 (2013).

    Article  CAS  Google Scholar 

  5. Peyrard, M. & Aubry, S. Critical behaviour at the transition by breaking of analyticity in the discrete Frenkel–Kontorova model. J. Phys. C 16, 1593–1608 (1983).

    Article  CAS  Google Scholar 

  6. Hirano, M. & Shinjo, K. Atomistic locking and friction. Phys. Rev. B 41, 11837–11851 (1990).

    Article  CAS  Google Scholar 

  7. Zhang, R. F. et al. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nature Nanotech. 8, 912–916 (2013).

    Article  CAS  Google Scholar 

  8. Nigues, A., Siria, A., Vincent, P., Poncharal, P. & Bocquet, L. Ultrahigh interlayer friction in multiwalled boron nitride nanotubes. Nature Mater. 13, 688–693 (2014).

    Article  CAS  Google Scholar 

  9. Dienwiebel, M. et al. Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004).

    Article  Google Scholar 

  10. Filippov, A. E., Dienwiebel, M., Frenken, J. W. M., Klafter, J. & Urbakh, M. Torque and twist against superlubricity. Phys. Rev. Lett. 100, 046102 (2008).

    Article  Google Scholar 

  11. Van Wijk, M. M., Dienwiebel, M., Frenken, J. W. M. & Fasolino, A. Superlubric to stick-slip sliding of incommensurate graphene flakes on graphite. Phys. Rev. B 88, 235423 (2013).

    Article  Google Scholar 

  12. Dietzel, D. et al. Frictional duality observed during nanoparticle sliding. Phys. Rev. Lett. 101, 125505 (2008).

    Article  Google Scholar 

  13. Dietzel, D., Feldmann, M., Schwarz, U. D., Fuchs, H. & Schirmeisen, A. Scaling laws of structural lubricity. Phys. Rev. Lett. 111, 235502 (2013).

    Article  Google Scholar 

  14. Bohlein, T., Mikhael, J. & Bechinger, C. Observation of kinks and antikinks in colloidal monolayers driven across ordered surfaces. Nature Mater. 11, 126–130 (2012).

    Article  CAS  Google Scholar 

  15. Vanossi, A., Manini, N. & Tosatti, E. Static and dynamic friction in sliding colloidal monolayers. Proc. Natl Acad. Sci. USA 109, 16429–16433 (2012).

    Article  CAS  Google Scholar 

  16. Krim, J. Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films. Adv. Phys. 61, 155–323 (2012).

    Article  CAS  Google Scholar 

  17. Daly, C. & Krim, J. Sliding friction of solid xenon monolayers and bilayers on Ag(111). Phys. Rev. Lett. 76, 803–806 (1996).

    Article  CAS  Google Scholar 

  18. Coffey, T. & Krim, J. Impact of substrate corrugation on the sliding friction levels of adsorbed films. Phys. Rev. Lett. 95, 076101 (2005).

    Article  CAS  Google Scholar 

  19. Bruschi, L., Carlin, A. & Mistura, G. Depinning of atomically thin Kr films on gold. Phys. Rev. Lett. 88, 046105 (2002).

    Article  CAS  Google Scholar 

  20. Pierno, M. et al. Nanofriction of neon films on superconducting lead. Phys. Rev. Lett. 105, 016102 (2010).

    Article  CAS  Google Scholar 

  21. Bruschi, L. et al. Friction reduction of Ne monolayers on preplated metal surfaces. Phys. Rev. B 81, 115419 (2010).

    Article  Google Scholar 

  22. Pierno, M. et al. Thermolubricity of gas monolayers on graphene. Nanoscale 6, 8062–8067 (2014).

    Article  CAS  Google Scholar 

  23. Cieplak, M., Smith, E. D. & Robbins, M. O. Molecular-origins of friction—the force on adsorbed layers. Science 265, 1209–1212 (1994).

    Article  CAS  Google Scholar 

  24. Tomassone, M. S., Sokoloff, J. B., Widom, A. & Krim, J. Dominance of phonon friction for a xenon film on a silver (111) surface. Phys. Rev. Lett. 79, 4798–4801 (1997).

    Article  CAS  Google Scholar 

  25. Righi, M. C. & Ferrario, M. Pressure induced friction collapse of rare gas boundary layers sliding over metal surfaces. Phys. Rev. Lett. 99, 176101 (2007).

    Article  CAS  Google Scholar 

  26. Righi, M. C. & Ferrario, M. Potential energy surface for rare gases adsorbed on Cu(111): parameterization of the gas/metal interaction potential. J. Phys. Condens. Matter 19, 305008 (2007).

    Article  Google Scholar 

  27. Varini, N. et al. Static friction scaling of physisorbed islands: the key is in the edge. Nanoscale 7, 2093–2101 (2015).

    Article  CAS  Google Scholar 

  28. Bruch, L. W., Diehl, R. D. & Venables, J. A. Progress in the measurement and modeling of physisorbed layers. Rev. Mod. Phys. 79, 1381–1454 (2007).

    Article  CAS  Google Scholar 

  29. Thomy, A., Duval, X. & Regnier, J. Two-dimensional phase transitions as displayed by adsorption isotherms on graphite and other lamellar solids. Surf. Sci. Rep. 1, 1–38 (1981).

    Article  CAS  Google Scholar 

  30. Watts, E. T., Krim, J. & Widom, A. Experimental observation of interfacial slippage at the boundary of molecularly thin-films with gold substrates. Phys. Rev. B 41, 3466–3472 (1990).

    Article  CAS  Google Scholar 

  31. Persson, B. N. Sliding Friction: Physical Principles and Applications Vol. 1 (Springer, 2000).

    Book  Google Scholar 

  32. Seyller, T., Caragiu, M., Diehl, R. D., Kaukasoina, P. & Lindroos, M. Observation of top-site adsorption for Xe on Cu(111). Chem. Phys. Lett. 291, 567–572 (1998).

    Article  CAS  Google Scholar 

  33. Jupille, J., Ehrhardt, J. J., Fargues, D. & Cassuto, A. Study of xenon layers on a Cu(111) surface. Faraday Discuss. 89, 323–328 (1990).

    Article  CAS  Google Scholar 

  34. Braun, J., Fuhrmann, D., Siber, A., Gumhalter, B. & Woll, C. Observation of a zone-center gap in the longitudinal mode of an adsorbate overlayer: xenon on Cu(111). Phys. Rev. Lett. 80, 125–128 (1998).

    Article  CAS  Google Scholar 

  35. Borovsky, B., Mason, B. L. & Krim, J. Scanning tunneling microscope measurements of the amplitude of vibration of a quartz crystal oscillator. J. Appl. Phys. 88, 4017–4021 (2000).

    Article  CAS  Google Scholar 

  36. Bruschi, L. & Mistura, G. Measurement of the friction of thin films by means of a quartz microbalance in the presence of a finite vapor pressure. Phys. Rev. B 63, 235411 (2001).

    Article  Google Scholar 

  37. Pierno, M. et al. Nanofriction of adsorbed monolayers on superconducting lead. Phys. Rev. B 84, 035448 (2011).

    Article  Google Scholar 

  38. Park, J. Y. et al. Adsorption and growth of Xe adlayers on the Cu(111) surface. Phys. Rev. B 60, 16934–16940 (1999).

    Article  CAS  Google Scholar 

  39. Hasnain, J., Jungblut, S. & Dellago, C. Dynamic phases of colloidal monolayers sliding on commensurate substrates. Soft Matter 9, 5867–5873 (2013).

    Article  CAS  Google Scholar 

  40. Da Silva, J. L. F., Stampfl, C. & Scheffler, M. Xe adsorption on metal surfaces: first-principles investigations. Phys. Rev. B 72, 075424 (2005).

    Article  Google Scholar 

  41. Da Silva, J. L. F. The nature and behavior of rare-gas atoms on metal surfaces. PhD thesis, Technische Universität Berlin, Berlin (2002).

  42. Chesters, M., Hussain, M. & Pritchard, J. Xenon monolayer structures on copper and silver. Surf. Sci. 35, 161–171 (1973).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work in Trieste was carried out under ERC grant 320796 MODPHYSFRICT. Support from Regione Emilia Romagna, Project INTERMECH – MO.RE, SNSF Sinergia contract CRSII2 136287/1 and EU COST Action MP1303 are also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

G.M. conceived the project. G.P., A.diB. and S.V. deposited and characterized the Cu(111) samples. M.P., L.B. and G.M. carried out the QCM experiments and analysed the data. R.G., A.V. and E.T. developed the theoretical model and performed the numerical simulations. All authors discussed the results and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Giampaolo Mistura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 425 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierno, M., Bruschi, L., Mistura, G. et al. Frictional transition from superlubric islands to pinned monolayers. Nature Nanotech 10, 714–718 (2015). https://doi.org/10.1038/nnano.2015.106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing