Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction

Abstract

The ability to detect light over a broad spectral range is central to practical optoelectronic applications and has been successfully demonstrated with photodetectors of two-dimensional layered crystals such as graphene and MoS2. However, polarization sensitivity within such a photodetector remains elusive. Here, we demonstrate a broadband photodetector using a layered black phosphorus transistor that is polarization-sensitive over a bandwidth from 400 nm to 3,750 nm. The polarization sensitivity is due to the strong intrinsic linear dichroism, which arises from the in-plane optical anisotropy of this material. In this transistor geometry, a perpendicular built-in electric field induced by gating can spatially separate the photogenerated electrons and holes in the channel, effectively reducing their recombination rate and thus enhancing the performance for linear dichroism photodetection. The use of anisotropic layered black phosphorus in polarization-sensitive photodetection might provide new functionalities in novel optical and optoelectronic device applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anisotropic electronic structure of layered BP.
Figure 2: Optical selection rules and broadband linear dichroism in BP.
Figure 3: BP photodetector with broadband response and polarization sensitivity.
Figure 4: Ambipolar operation and the vertical p–n junction in BP transistors.
Figure 5: Gate enhancement of linear dichroism detection by a vertical p–n junction in a BP EDLT.

Similar content being viewed by others

References

  1. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  2. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  3. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  4. Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    Article  CAS  Google Scholar 

  5. Novoselov, K. S. et al. Room-temperature quantum Hall effect in graphene. Science 315, 1379–1379 (2007).

    Article  CAS  Google Scholar 

  6. Bolotin, K. I., Ghahari, F., Shulman, M. D., Stormer, H. L. & Kim, P. Observation of the fractional quantum Hall effect in graphene. Nature 462, 196–199 (2009).

    Article  CAS  Google Scholar 

  7. Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3 . Science 325, 178–181 (2009).

    Article  CAS  Google Scholar 

  8. Zhang, H. J. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Phys. 5, 438–442 (2009).

    Article  CAS  Google Scholar 

  9. Mak, K. F., He, K. L., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    Article  CAS  Google Scholar 

  10. Zeng, H. L., Dai, J. F., Yao, W., Xiao, D. & Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    Article  CAS  Google Scholar 

  11. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).

    Article  Google Scholar 

  12. Li, L. K. et al. Black phosphorus field-effect transistors. Nature Nanotech. 9, 372–377 (2014).

    Article  CAS  Google Scholar 

  13. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  CAS  Google Scholar 

  14. Low, T. et al. Tunable optical properties of multilayers black phosphorus thin films. Phys. Rev. B 90, 075434 (2014).

    Article  Google Scholar 

  15. Xu, Y. et al. Large-gap quantum spin Hall insulators in tin films. Phys. Rev. Lett. 111, 136804 (2013).

    Article  Google Scholar 

  16. Buscema, M. et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347–3352 (2014).

    Article  CAS  Google Scholar 

  17. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2 . Nature Nanotech. 8, 497–501 (2013).

    Article  CAS  Google Scholar 

  18. Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Commun. 5, 4458 (2014).

    Article  CAS  Google Scholar 

  19. Qiao, J., Kong, X., Hu, Z. X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Commun. 5, 4475 (2014).

    Article  CAS  Google Scholar 

  20. Low, T. et al. Plasmons and screening in monolayer and multilayer black phosphorus. Phys. Rev. Lett. 113, 106802 (2014).

    Article  Google Scholar 

  21. Low, T., Engel, M., Steiner, M. & Avouris, P. Origin of photoresponse in black phosphorus photo-transistors. Phys. Rev. B 90, 081408 (2014).

    Article  Google Scholar 

  22. Fei, R. et al. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett. 14, 6393–6399 (2014).

    Article  CAS  Google Scholar 

  23. Engel, M., Steiner, M. & Avouris, P. A black phosphorus photo-detector for multispectral, high-resolution imaging. Nano Lett. 14, 6414–6417 (2014).

    Article  CAS  Google Scholar 

  24. Buscema, M., Groenendijk, D. J., Steele, G. A., van der Zant, H. S. J. & Castellanos-Gomez, A. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nature Commun. 5, 4651 (2014).

    Article  CAS  Google Scholar 

  25. Deng, Y. et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 8, 8292–8299 (2014).

    Article  CAS  Google Scholar 

  26. Kamalakar, M. V., Madhushankar, B. N., Dankert, A. & Dash, S. P. Low Schottky barrier black phosphorus field-effect devices with ferromagnetic tunnel contacts. Small http://dx.doi.org/10.1002/smll.201402900 (2015).

  27. Dresselhaus, G. Optical absorption band edge in anisotropic crystals. Phys. Rev. 105, 135–138 (1957).

    Article  CAS  Google Scholar 

  28. Blakemore, J. S. & Nomura, K. C. Intrinsic optical absorption in tellurium. Phys. Rev. 127, 1024–1029 (1962).

    Article  CAS  Google Scholar 

  29. Wang, J. F., Gudiksen, M. S., Duan, X. F., Cui, Y. & Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001).

    Article  CAS  Google Scholar 

  30. Nanot, S. et al. Broadband, polarization-sensitive photodetector based on optically-thick films of macroscopically long, dense, and aligned carbon nanotubes. Sci. Rep. 3, 1335 (2013).

    Article  Google Scholar 

  31. Liao, Y. L. & Zhao, Y. Design of wire-grid polarizer with effective medium theory. Opt. Quantum Electron. 46, 641–647 (2014).

    Article  Google Scholar 

  32. Miyamaru, F. & Hangyo, M. Polarization response of two-dimensional metallic photonic crystals studied by terahertz time-domain spectroscopy. Appl. Opt. 43, 1412–1415 (2004).

    Article  Google Scholar 

  33. Guillaumee, M. et al. Polarization sensitive silicon photodiodes using nanostructured metallic grids. Appl. Phys. Lett. 94, 193503 (2009).

    Article  Google Scholar 

  34. Han, C. Q. et al. Electronic structures of black phosphorus studied by angle-resolved photoemission spectroscopy. Phys. Rev. B 90, 085101 (2014).

    Article  Google Scholar 

  35. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  CAS  Google Scholar 

  36. Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  CAS  Google Scholar 

  37. Jacobs-Gedrim, R. B. et al. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS Nano 8, 514–521 (2014).

    Article  CAS  Google Scholar 

  38. Cho, J. H. et al. Printable ion–gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nature Mater. 7, 900–906 (2008).

    Article  CAS  Google Scholar 

  39. Kawasaki, M. & Iwasa, Y. Electronics: ‘cut and stick’ ion gels. Nature 489, 510–511 (2012).

    Article  CAS  Google Scholar 

  40. Yuan, H. T. et al. Zeeman-type spin splitting controlled by an electric field. Nature Phys. 9, 563–569 (2013).

    Article  CAS  Google Scholar 

  41. Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nature Nanotech. 8, 952–958 (2013).

    Article  CAS  Google Scholar 

  42. Kim, C. O. et al. High photoresponsivity in an all-graphene p–n vertical junction photodetector. Nature Commun. 5, 3249 (2014).

    Article  Google Scholar 

  43. Liu, C. H., Chang, Y. C., Norris, T. B. & Zhong, Z. H. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nature Nanotech. 9, 273–278 (2014).

    Article  CAS  Google Scholar 

  44. Hu, L., Dalgleish, S., Matsushita, M. M., Yoshikawa, H. & Awaga, K. Storage of an electric field for photocurrent generation in ferroelectric-functionalized organic devices. Nature Commun. 5, 3279 (2014).

    Article  Google Scholar 

  45. Kresse, G. & Hafner, J. Ab initio molecular-dynamics for liquid-metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  46. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  47. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  48. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 136, B864 (1964).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (contract no. DE-AC02-76SF00515). X.L., F.A., A.G.C. and M.L.B. acknowledge support from the Department of Energy (grant no. DE-FG07-ER46426). A.G.C. acknowledges the support of a Marie Curie International Outgoing Fellowship. G.J.Y and X.H.C acknowledge the support from Strategic Priority Research Program (B) of the Chinese Academy of Sciences and the National Basic Research Program of China (973 Program).

Author information

Authors and Affiliations

Authors

Contributions

H.T.Y., H.Y.H. and Y.C. conceived and designed the experiments. H.T.Y. performed sample fabrication and transport measurements. H.T.Y., X.G.L., F.A., A.G.C. and M.B. performed optical measurements. W.L. and Z.X.S. performed ARPES measurement. G.X., B.L. and S.C.Z. performed DFT calculations and theoretical analyses. X.G.L. performed the band bending calculation. J.S. performed transmission electron microscopy analysis. G.J.Y and X.H.C. grew the high-quality BP crystals. Y.H., M.B., Z.X.S., S.C.Z., X.H.C., H.Y.H. and Y.C. supervised the project and all authors contributed to data discussions. H.T.Y. wrote the manuscript, with input from all authors.

Corresponding authors

Correspondence to Harold Y. Hwang or Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1542 kb)

Supplementary information

Supplementary Movie 1 (MOV 65854 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H., Liu, X., Afshinmanesh, F. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nature Nanotech 10, 707–713 (2015). https://doi.org/10.1038/nnano.2015.112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.112

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing