Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optically active quantum dots in monolayer WSe2

Abstract

Semiconductor quantum dots have emerged as promising candidates for the implementation of quantum information processing, because they allow for a quantum interface between stationary spin qubits and propagating single photons1,2,3. In the meantime, transition-metal dichalcogenide monolayers have moved to the forefront of solid-state research due to their unique band structure featuring a large bandgap with degenerate valleys and non-zero Berry curvature4. Here, we report the observation of zero-dimensional anharmonic quantum emitters, which we refer to as quantum dots, in monolayer tungsten diselenide, with an energy that is 20–100 meV lower than that of two-dimensional excitons. Photon antibunching in second-order photon correlations unequivocally demonstrates the zero-dimensional anharmonic nature of these quantum emitters. The strong anisotropic magnetic response of the spatially localized emission peaks strongly indicates that radiative recombination stems from localized excitons that inherit their electronic properties from the host transition-metal dichalcogenide. The large 1 meV zero-field splitting shows that the quantum dots have singlet ground states and an anisotropic confinement that is most probably induced by impurities or defects. The possibility of achieving electrical control in van der Waals heterostructures5 and to exploit the spin–valley degree of freedom6 renders transition-metal-dichalcogenide quantum dots interesting for quantum information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photoluminescence of monolayer WSe2 flakes.
Figure 2: Photon correlations and photoluminescence lifetimes of quantum dots.
Figure 3: Stability of emission and spectral wandering of quantum dots.
Figure 4: Magnetic field dependence of quantum dot photoluminescence.

Similar content being viewed by others

References

  1. DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

    Article  Google Scholar 

  2. Imamoğlu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

    Article  Google Scholar 

  3. Gao, W-B., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoğlu, A. Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).

    Article  CAS  Google Scholar 

  4. Xu, X., Wang, Y., Di, X. & Heinz, T. F. Spins and pseudospins in layered transition metal dichalcogenides. Nature Phys. 10, 343–350 (2014).

    Article  CAS  Google Scholar 

  5. Lee, C-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nature Nanotech. 9, 676–681 (2014).

    Article  CAS  Google Scholar 

  6. Xiao, D., Liu, G-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  Google Scholar 

  7. Dousse, A. et al. Ultrabright source of entangled photon pairs. Nature 466, 217–220 (2010).

    Article  CAS  Google Scholar 

  8. Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).

    Article  CAS  Google Scholar 

  9. Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    Article  CAS  Google Scholar 

  10. De Greve, K. et al. Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012).

    Article  CAS  Google Scholar 

  11. Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

    Article  CAS  Google Scholar 

  12. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  CAS  Google Scholar 

  13. Wilson-Rae, I., Galland, C., Zwerger, W. & Imamoglu, A. Exciton-assisted optomechanics with suspended carbon nanotubes. New J. Phys. 14, 115003 (2012).

    Article  Google Scholar 

  14. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nature Nanotech. 8, 896–869 (2013).

    Article  Google Scholar 

  15. Tongay, S. et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep. 3, 2657 (2013).

    Article  Google Scholar 

  16. Srivastava, A. et al. Valley Zeeman effect in elementary optical excitations of a monolayer WSe2 . Nature Phys. 11, 141–147 (2015).

    Article  CAS  Google Scholar 

  17. Lagarde, D. et al. Carrier and polarization dynamics in monolayer MoS2 . Phys. Rev. Lett. 112, 047401 (2014).

    Article  CAS  Google Scholar 

  18. Reynaud, S. La fluorescence de résonance: Étude par la méthode de l'atome habillé. Ann. Phys. (Paris) 8, 315 (1983).

    Article  CAS  Google Scholar 

  19. Lounis, B., Bechtel, H. A., Gerion, D., Alivisatos, P. & Moerner, W. E. Photon antibunching in single CdSe/ZnS quantum dot fluorescence. Chem. Phys. Lett. 329, 399–404 (2000).

    Article  CAS  Google Scholar 

  20. Delteil, A., Gao, W-B., Fallahi, P., Miguel-Sanchez, J. & Imamoğlu, A. Observation of quantum jumps of a single quantum dot spin using submicrosecond single-shot optical readout. Phys. Rev. Lett. 112, 116802 (2014).

    Article  Google Scholar 

  21. Frantsuzov, P., Kuno, M., Janko, B. & Marcus, R. A. Universal emission intermittency in quantum dots, nanorods and nanowires. Nature Phys. 4, 519–522 (2008).

    Article  Google Scholar 

  22. MacNeill, D. et al. Breaking of valley degeneracy by magnetic field in monolayer MoSe2 . Phys. Rev. Lett. 114, 037401 (2015).

    Article  Google Scholar 

  23. Aivazian, G. et al. Magnetic control of valley pseudospin in monolayer WSe2 . Nature Phys. 11, 148–152 (2015).

    Article  CAS  Google Scholar 

  24. Li, Y. et al. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2 . Phys. Rev. Lett. 113, 266804 (2014).

    Article  Google Scholar 

  25. Liu, G-B., Pang, H., Yao, Y. & Yao, W. Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenides. New J. Phys. 16, 105011 (2014).

    Article  Google Scholar 

  26. Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S. & Park, D. Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot. Science 273, 87–90 (1996).

    Article  CAS  Google Scholar 

  27. Enyashin, A. N., Bar-Sadan, M., Houben, L. & Seifert, G. Line defects in molybdenum disulfide layers. J. Phys. Chem. C 117, 10842 (2013).

    Article  CAS  Google Scholar 

  28. Klinovaja, J. & Loss, D. Spintronics in MoS2 monolayer quantum wires. Phys. Rev. B 88, 075404 (2013).

    Article  Google Scholar 

  29. Kormányos, A., Zólyomi, V., Drummond, N. D. & Burkard, G. Spin–orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys. Rev. X 4, 011034 (2014).

    Google Scholar 

  30. He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nature Nanotech. http://dx.doi.org/10.1038/nnano.2015.75 (2015).

  31. Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nature Nanotech. http://dx.doi.org/10.1038/nnano.2015.67 (2015).

  32. Chakraborty, C. et al. Voltage-controlled quantum light from an atomically thin semiconductor. Nature Nanotech. http://dx.doi.org/10.1038/nnano.2015.79 (2015).

  33. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  34. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by NCCR Quantum Science and Technology (NCCR QSIT), a research instrument of the Swiss National Science Foundation (SNSF).

Author information

Authors and Affiliations

Authors

Contributions

A.S. and M.S. carried out the optical measurements. A.V.A., D.S.L. and A.K. prepared the samples. A.S. and A.I. supervised the project and analysed the experimental data. All authors contributed extensively to this work.

Corresponding authors

Correspondence to Ajit Srivastava or A. Imamoğlu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 361 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Sidler, M., Allain, A. et al. Optically active quantum dots in monolayer WSe2. Nature Nanotech 10, 491–496 (2015). https://doi.org/10.1038/nnano.2015.60

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.60

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing