Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoscale optical tomography with cathodoluminescence spectroscopy

Abstract

Tomography has enabled the characterization of the Earth's interior, visualization of the inner workings of the human brain, and three-dimensional reconstruction of matter at the atomic scale. However, tomographic techniques that rely on optical excitation or detection are generally limited in their resolution by diffraction. Here, we introduce a tomographic technique—cathodoluminescence spectroscopic tomography—to probe optical properties in three dimensions with nanometre-scale spatial and spectral resolution. We first obtain two-dimensional cathodoluminescence maps of a three-dimensional nanostructure at various orientations. We then use the method of filtered back-projection to reconstruct the cathodoluminescence intensity at each wavelength. The resulting tomograms allow us to locate regions of efficient cathodoluminescence in three dimensions across visible and near-infrared wavelengths, with contributions from material luminescence and radiative decay of electromagnetic eigenmodes. The experimental signal can be further correlated with the radiative local density of optical states in particular regions of the reconstruction. We demonstrate how cathodoluminescence tomography can be used to achieve nanoscale three-dimensional visualization of light–matter interactions by reconstructing a three-dimensional metal–dielectric nanoresonator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metal–dielectric crescents.
Figure 2: Cathodoluminescence line scans.
Figure 3: Two-dimensional cathodoluminescence maps.
Figure 4: Three-dimensional TEM and cathodoluminescence reconstructions.
Figure 5: Axial voxel cathodoluminescence spectra.
Figure 6: Cathodoluminescence spectroscopic tomography.

Similar content being viewed by others

References

  1. Arridge, S. R. Optical tomography in medical imaging. Inverse Problems 15, R41–R93 (1999).

    Article  Google Scholar 

  2. Munk, W., Worcester, P. & Wunsch, C. Ocean Acoustic Tomography (Cambridge Univ. Press, 2009).

    Google Scholar 

  3. Nolet, G. (ed.) Seismic Tomography (Springer Netherlands, 1987).

    Book  Google Scholar 

  4. Crowther, R. A., DeRosier, D. J. & Klug, A. The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. Lond. A 317, 319 (1970).

    Article  Google Scholar 

  5. Yao, N. & Wang, Z. L. Handbook of Microscopy for Nanotechnology (Springer, 2006).

    Google Scholar 

  6. Midgley, P. A. & Dunin-Borkowski, R. E. Electron tomography and holography in materials science. Nature Mater. 8, 271 (2009).

    Article  CAS  Google Scholar 

  7. De Winter, D., Lebbink, M. N., Wiggers De Vries, D. F., Post, J. A. & Drury, M. R. FIB–SEM cathodoluminescence tomography: practical and theoretical considerations. J. Microsc. 243, 315 (2011).

    Article  CAS  Google Scholar 

  8. Van Aert, S., Batenburg, K. J., Rossell, M. D., Erni, R. & Van Tendeloo, G. Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470, 374 (2011).

    Article  CAS  Google Scholar 

  9. Scott, M. C. et al. Electron tomography at 2.4-ångström resolution. Nature 483, 444 (2012).

    Article  CAS  Google Scholar 

  10. Möbus, G., Doole, R. C. & Inkson, B. J. Spectroscopic electron tomography. Ultramicroscopy 96, 433 (2003).

    Article  Google Scholar 

  11. Gass, M. H., Koziol, K. K. K., Windle, A. H. & Midgley, P. A. Four-dimensional spectral tomography of carbonaceous nanocomposites. Nano Lett. 6, 376 (2006).

    Article  CAS  Google Scholar 

  12. Jarausch, K., Thomas, P., Leonard, D. N., Twesten, R. & Booth, C. R. Four-dimensional STEM-EELS: enabling nano-scale chemical tomography. Ultramicroscopy 109, 326 (2009).

    Article  CAS  Google Scholar 

  13. Haberfehlner, G. et al. Four-dimensional spectral low-loss energy-filtered transmission electron tomography of silicon nanowire-based capacitors. Appl. Phys. Lett. 101, 063108 (2012).

    Article  Google Scholar 

  14. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810 (2008).

    Article  CAS  Google Scholar 

  15. Pavani, S. R. P. et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl. Acad. Sci. USA 106, 2995 (2009).

    Article  CAS  Google Scholar 

  16. Klar, T. et al. Surface-plasmon resonances in single metallic nanoparticles. Phys. Rev. Lett. 80, 4249 (1998).

    Article  CAS  Google Scholar 

  17. Schnell, M. et al. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nature Photon. 3, 287 (2009).

    Article  CAS  Google Scholar 

  18. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82 (2012).

    Article  CAS  Google Scholar 

  19. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77 (2012).

    Article  CAS  Google Scholar 

  20. Michaelis, J., Hettich, C., Mlynek, J. & Sandoghdar, V. Optical microscopy using a single-molecule light source. Nature 405, 325 (2000).

    Article  CAS  Google Scholar 

  21. Farahani, J. N., Pohl, D. W., Eisler, H. J. & Hecht, B. Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys. Rev. Lett. 95, 017402 (2005).

    Article  CAS  Google Scholar 

  22. Frimmer, M., Chen, Y. & Koenderink, A. F. Scanning emitter lifetime imaging microscopy for spontaneous emission control. Phys. Rev. Lett. 107, 123602 (2011).

    Article  Google Scholar 

  23. Dolde, F. et al. Electric-field sensing using single diamond spins. Nature Phys. 7, 459 (2011).

    Article  CAS  Google Scholar 

  24. Geiselmann, M. et al. Three-dimensional optical manipulation of a single electron spin. Nature Nanotech. 8, 175 (2013).

    Article  CAS  Google Scholar 

  25. García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209 (2010).

    Article  Google Scholar 

  26. García de Abajo, F. & Kociak, M. Probing the photonic local density of states with electron energy loss spectroscopy. Phys. Rev. Lett. 100, 106804 (2008).

    Article  Google Scholar 

  27. Hohenester, U., Ditlbacher, H. & Krenn, J. R. Electron-energy-loss spectra of plasmonic nanoparticles. Phys. Rev. Lett. 103, 106801 (2009).

    Article  Google Scholar 

  28. Yamamoto, N., Araya, K. & García de Abajo, F. Photon emission from silver particles induced by a high-energy electron beam. Phys. Rev. B 64, 205419 (2001).

    Article  Google Scholar 

  29. Coenen, T., Vesseur, E., Polman, A. & Koenderink, A. Directional emission from plasmonic Yagi-uda antennas probed by angle-resolved cathodoluminescence spectroscopy. Nano Lett. 11, 3779 (2011).

    Article  CAS  Google Scholar 

  30. Sapienza, R. et al. Deep-subwavelength imaging of the modal dispersion of light. Nature Mater. 11, 781 (2012).

    Article  CAS  Google Scholar 

  31. Hörl, A., Trügler, A. & Hohenester, U. Tomography of particle plasmon fields from electron energy loss spectroscopy. Phys. Rev. Lett. 111, 076801 (2013).

    Article  Google Scholar 

  32. Nicoletti, O. et al. Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 502, 80 (2013).

    Article  CAS  Google Scholar 

  33. Aubry, A. et al. Plasmonic light-harvesting devices over the whole visible spectrum. Nano Lett. 10, 2574 (2010).

    Article  CAS  Google Scholar 

  34. Fernandez-Dominguez, A. I., Luo, Y., Wiener, A., Pendry, J. & Maier, S. A. Theory of three-dimensional nanocrescent light harvesters. Nano Lett. 12, 5946 (2012).

    Article  CAS  Google Scholar 

  35. Luo, Y., Lei, D. Y., Maier, S. A. & Pendry, J. Broadband light harvesting nanostructures robust to edge bluntness. Phys. Rev. Lett. 108, 023901 (2012).

    Article  Google Scholar 

  36. Lu, Y., Liu, G., Kim, J., Mejia, Y. & Lee, L. Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett. 5, 119 (2005).

    Article  CAS  Google Scholar 

  37. Liu, G. L., Lu, Y., Kim, J., Doll, J. C. & Lee, L. P. Magnetic nanocrescents as controllable surface-enhanced Raman scattering nanoprobes for biomolecular imaging. Adv. Mater. 17, 2683 (2005).

    Article  CAS  Google Scholar 

  38. Ross, B. & Lee, L. Plasmon tuning and local field enhancement maximization of the nanocrescent. Nanotechnology 19, 275201 (2008).

    Article  Google Scholar 

  39. Knight, M. W. & Halas, N. J. Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit. New J. Phys. 10, 105006 (2008).

    Article  Google Scholar 

  40. Atre, A. C., García-Etxarri, A., Alaeian, H. & Dionne, J. A. Toward high-efficiency solar upconversion with plasmonic nanostructures. J. Opt. 14, 024008 (2012).

    Article  Google Scholar 

  41. Cortie, M. & Ford, M. A plasmon-induced current loop in gold semi-shells. Nanotechnology 18, 235704 (2007).

    Article  Google Scholar 

  42. Mirin, N. A. & Halas, N. J. Light-bending nanoparticles. Nano Lett. 9, 1255 (2009).

    Article  CAS  Google Scholar 

  43. Atre, A. C., García-Etxarri, A., Alaeian, H. & Dionne, J. A. A broadband negative index metamaterial at optical frequencies. Adv. Opt. Mater. 1, 327 (2013).

    Article  Google Scholar 

  44. García de Abajo, F. & Howie, A. Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics. Phys. Rev. Lett. 80, 5180 (1998).

    Article  Google Scholar 

  45. García de Abajo, F. & Howie, A. Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys. Rev. B 65, 115418 (2002).

    Article  Google Scholar 

  46. Gómez-Medina, R., Yamamoto, N., Nakano, M. & García de Abajo, F. J. Mapping plasmons in nanoantennas via cathodoluminescence. New J. Phys. 10, 105009 (2008).

    Article  Google Scholar 

  47. Mooradian, A. Photoluminescence of metals. Phys. Rev. Lett. 22, 185 (1969).

    Article  CAS  Google Scholar 

  48. Wu, X. et al. High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy. ACS Nano 4, 113 (2009).

    Article  Google Scholar 

  49. Yorulmaz, M., Khatua, S., Zijlstra, P., Gaiduk, A. & Orrit, M. Luminescence quantum yield of single gold nanorods. Nano Lett. 12, 4385 (2012).

    Article  CAS  Google Scholar 

  50. George, G. A. The phosphorescence spectrum and photodegradation of polystyrene films. J. Appl. Polym. Sci. 18, 419 (1974).

    Article  CAS  Google Scholar 

  51. Hanson, K. M. Special topics in test methodology: tomographic reconstruction of axially symmetric objects from a single radiograph. Progr. Astronaut. Aeronaut. 155, 1 (1993).

    Google Scholar 

  52. Wang, X. Y. et al. Reconstruction and visualization of nanoparticle composites by transmission electron tomography. Ultramicroscopy 113, 96 (2012).

    Article  CAS  Google Scholar 

  53. Lyra, M. & Ploussi, A. Filtering in SPECT image reconstruction. Int. J. Biomed. Imag. 2011, 1 (2011).

    Article  Google Scholar 

  54. Arslan, I., Tong, J. R. & Midgley, P. A. Reducing the missing wedge: high-resolution dual axis tomography of inorganic materials. Ultramicroscopy 106, 994 (2006).

    Article  CAS  Google Scholar 

  55. Van Heel, M. et al. Single-particle electron cryo-microscopy: towards atomic resolution. Q. Rev. Biophys. 33, 307 (2000).

    Article  CAS  Google Scholar 

  56. Cai, D., Neyer, A., Kuckuk, R. & Heise, H. M. Raman, mid-infrared, near-infrared and ultraviolet–visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials. J. Mol. Struct. 976, 274 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Sheikholeslami and A. Saleh for assistance with photoluminescence measurements, and J. Briggs and T. Narayan for scientific discussions. The authors also thank T. Carver for electron beam evaporation. A.C.A. acknowledges support from the Robert L. and Audrey S. Hancock Stanford Graduate Fellowship. J.A.D. acknowledges support from an Air Force Office of Scientific Research PECASE grant (FA9550-15-1-0006) and a National Science Foundation CAREER Award (DMR-1151231). Funding from a Department of Energy EERE Sunshot grant (no. DE-EE0005331) is also acknowledged. This work is part of the research programme of the Stichting voor Fundamenteel Onderzoek der Materie (FOM), which is supported financially by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). This work was funded by the European Research Council and is also part of NanoNextNL, a nanotechnology programme funded by the Dutch Ministry of Economic Affairs.

Author information

Authors and Affiliations

Authors

Contributions

A.C.A. fabricated samples and performed transmission electron microscopy, photoluminescence spectroscopy, tomographic reconstruction and electromagnetic simulations. A.C.A., B.J.M.B. and T.C. performed the cathodoluminescence microscopy, spectroscopy and scanning electron microscopy. A.G-E. performed boundary element method simulations. J.A.D. and A.P. guided and supervised the experiments and analysis. All authors analysed and interpreted the results and edited the manuscript.

Corresponding author

Correspondence to Ashwin C. Atre.

Ethics declarations

Competing interests

A.P. is co-founder and co-owner of Delmic BV, a startup company that is developing a commercial product based on the cathodoluminescence system used in this work.

Supplementary information

Supplementary information

Supplementary information (PDF 15729 kb)

Supplementary Movie 1

Supplementary Movie 1 (MP4 3494 kb)

Supplementary Movie 2

Supplementary Movie 2 (MP4 4473 kb)

Supplementary Movie 3

Supplementary Movie 3 (MP4 4584 kb)

Supplementary Movie 4

Supplementary Movie 4 (MP4 3611 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atre, A., Brenny, B., Coenen, T. et al. Nanoscale optical tomography with cathodoluminescence spectroscopy. Nature Nanotech 10, 429–436 (2015). https://doi.org/10.1038/nnano.2015.39

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.39

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing