Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spin–orbit-torque engineering via oxygen manipulation

Abstract

Spin transfer torques allow the electrical manipulation of magnetization at room temperature, which is desirable in spintronic devices such as spin transfer torque memories. When combined with spin–orbit coupling, they give rise to spin–orbit torques, which are a more powerful tool for controlling magnetization and can enrich device functionalities. The engineering of spin–orbit torques, based mostly on the spin Hall effect, is being intensely pursued. Here, we report that the oxidation of spin–orbit-torque devices triggers a new mechanism of spin–orbit torque, which is about two times stronger than that based on the spin Hall effect. We thus introduce a way to engineer spin–orbit torques via oxygen manipulation. Combined with electrical gating of the oxygen level, our findings may also pave the way towards reconfigurable logic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device structure and the effect of SiO2 capping layer thickness.
Figure 2: SIMS, XPS, XAS, VSM and XMCD characterization.
Figure 3: CoFeB oxidation effect.
Figure 4: CoFeB thickness effect.
Figure 5: Material and structural dependence of sign reversal.

Similar content being viewed by others

References

  1. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  Google Scholar 

  2. Brataas, A., Kent, A. D. & Ohno, H. Current-induced torques in magnetic materials. Nature Mater. 11, 372–381 (2012).

    Article  CAS  Google Scholar 

  3. Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  CAS  Google Scholar 

  4. Awschalom, D. D. & Flatte, M. E. Challenges for semiconductor spintronics. Nature Phys. 3, 153–159 (2007).

    Article  CAS  Google Scholar 

  5. Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B. & Ralph, D. C. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149 (2000).

    Article  CAS  Google Scholar 

  6. Ralph, D. C. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

    Article  CAS  Google Scholar 

  7. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  CAS  Google Scholar 

  8. Liu, L. Q. et al. Spin–torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  CAS  Google Scholar 

  9. Miron, I. M. et al. Fast current-induced domain-wall motion controlled by the Rashba effect. Nature Mater. 10, 419–423 (2011).

    Article  CAS  Google Scholar 

  10. Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nature Mater. 9, 230–234 (2010).

    Article  Google Scholar 

  11. Liu, L. Q., Pai, C. F., Ralph, D. C. & Buhrman, R. A. Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction devices. Phys. Rev. Lett. 109, 186602 (2012).

    Article  Google Scholar 

  12. Demidov, V. E. et al. Magnetic nano-oscillator driven by pure spin current. Nature Mater. 11, 1028–1031 (2012).

    Article  CAS  Google Scholar 

  13. Jamali, M. et al. Spin–orbit torques in Co/Pd multilayer nanowires. Phys. Rev. Lett. 111, 246602 (2013).

    Article  Google Scholar 

  14. Suzuki, T. et al. Current-induced effective field in perpendicularly magnetized Ta/CoFeB/MgO wire. Appl. Phys. Lett. 98, 142505 (2011).

    Article  Google Scholar 

  15. Ryu, K-S., Thomas, L., Yang, S-H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nature Nanotech. 8, 527–533 (2013).

    Article  CAS  Google Scholar 

  16. Emori, S., Bauer, U., Ahn, S. M., Martinez, E. & Beach, G. S. Current-driven dynamics of chiral ferromagnetic domain walls. Nature Mater. 12, 611–616 (2013).

    Article  CAS  Google Scholar 

  17. Lee, K-S., Lee, S-W., Min, B-C. & Lee, K-J. Threshold current for switching of a perpendicular magnetic layer induced by spin Hall effect. Appl. Phys. Lett. 102, 112410 (2013).

    Article  Google Scholar 

  18. Fan, X. et al. Observation of the nonlocal spin–orbital effective field. Nature Commun. 4, 1799 (2013).

    Article  Google Scholar 

  19. Pai, C-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).

    Article  Google Scholar 

  20. Haazen, P. P. J. et al. Domain wall depinning governed by the spin Hall effect. Nature Mater. 12, 299–303 (2013).

    Article  CAS  Google Scholar 

  21. Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. Nature Mater. 12, 240–245 (2013).

    Article  CAS  Google Scholar 

  22. Fan, X. et al. Quantifying interface and bulk contributions to spin–orbit torque in magnetic bilayers. Nature Commun. 5, 3042 (2014).

    Article  Google Scholar 

  23. Liu, L. Q., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    Article  Google Scholar 

  24. Pi, U. H. et al. Tilting of the spin orientation induced by Rashba effect in ferromagnetic metal layer. Appl. Phys. Lett. 97, 162507 (2010).

    Article  Google Scholar 

  25. Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nature Nanotech. 8, 587–591 (2013).

    Article  CAS  Google Scholar 

  26. Qiu, X. et al. Angular and temperature dependence of current induced spin–orbit effective fields in Ta/CoFeB/MgO nanowires. Sci. Rep. 4, 4491 (2014).

    Article  Google Scholar 

  27. Chen, C. T. et al. Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. Phys. Rev. Lett. 75, 152–155 (1995).

    Article  CAS  Google Scholar 

  28. de Groot, F. M. F., Fuggle, J. C., Thole, B. T. & Sawatzky, G. A. 2p X-ray absorption of 3d transition-metal compounds. An atomic multiplet description including the crystal field. Phys. Rev. B 42, 5459–5468 (1990).

    Article  CAS  Google Scholar 

  29. Kim, J. Y. et al. Ferromagnetism induced by clustered Co in Co-doped anatase TiO2 thin films. Phys. Rev. Lett. 90, 017401 (2003).

    Article  Google Scholar 

  30. Park, S. et al. Strain control of Morin temperature in epitaxial α-Fe2O3(0001) film. Europhys. Lett. 103, 27007 (2013).

    Article  Google Scholar 

  31. Ohresser, P., Ghiringhelli, G., Tjernberg, O., Brookes, N. B. & Finazzi, M. Magnetism of nanostructures studied by X-ray magnetic circular dichroism: Fe on Cu(111). Phys. Rev. B 62, 5803–5809 (2000).

    Article  CAS  Google Scholar 

  32. Nistor, C. et al. Orbital moment anisotropy of Pt/Co/AlOx heterostructures with strong Rashba interaction. Phys. Rev. B 84, 054464 (2011).

    Article  Google Scholar 

  33. Wu, Y., Stöhr, J., Hermsmeier, B. D., Samant, M. G. & Weller, D. Enhanced orbital magnetic moment on Co atoms in Co/Pd multilayers: a magnetic circular X-ray dichroism study. Phys. Rev. Lett. 69, 2307–2310 (1992).

    Article  CAS  Google Scholar 

  34. Haney, P. M., Lee, H-W., Lee, K-J., Manchon, A. & Stiles, M. D. Current induced torques and interfacial spin–orbit coupling: semiclassical modeling. Phys. Rev. B 87, 174411 (2013).

    Article  Google Scholar 

  35. Brataas, A., Nazarov, Y. V. & Bauer, G. E. W. Finite-element theory of transport in ferromagnet–normal metal systems. Phys. Rev. Lett. 84, 2481–2484 (2000).

    Article  CAS  Google Scholar 

  36. Pesin, D. A. & MacDonald, A. H. Quantum kinetic theory of current-induced torques in Rashba ferromagnets. Phys. Rev. B 86, 014416 (2012).

    Article  Google Scholar 

  37. Wang, X. H. & Manchon, A. Diffusive spin dynamics in ferromagnetic thin films with a Rashba interaction. Phys. Rev. Lett. 108, 117201 (2012).

    Article  Google Scholar 

  38. van der Bijl, E. & Duine, R. A. Current-induced torques in textured Rashba ferromagnets. Phys. Rev. B 86, 094406 (2012).

    Article  Google Scholar 

  39. Kim, K-W., Seo, S-M., Ryu, J., Lee, K-J. & Lee, H-W. Magnetization dynamics induced by in-plane currents in ultrathin magnetic nanostructures with Rashba spin–orbit coupling. Phys. Rev. B 85, 180404 (2012).

    Article  Google Scholar 

  40. Haney, P. M. & Stiles, M. D. Current-induced torques in the presence of spin–orbit coupling. Phys. Rev. Lett. 105, 126602 (2010).

    Article  Google Scholar 

  41. Krupin, O. et al. Rashba effect at magnetic metal surfaces. Phys. Rev. B 71, 201403 (2005).

    Article  Google Scholar 

  42. Park, S. R., Kim, C. H., Yu, J., Han, J. H. & Kim, C. Orbital-angular-momentum based origin of Rashba-type surface band splitting. Phys. Rev. Lett. 107, 156803 (2011).

    Article  Google Scholar 

  43. Park, S. R. et al. Chiral orbital–angular momentum in the surface states of Bi2Se3 . Phys. Rev. Lett. 108, 046805 (2012).

    Article  Google Scholar 

  44. Park, J-H., Kim, C. H., Lee, H-W. & Han, J. H. Orbital chirality and Rashba interaction in magnetic bands. Phys. Rev. B 87, 041301 (2013).

    Article  Google Scholar 

  45. Haney, P. M., Lee, H-W., Lee, K-J., Manchon, A. & Stiles, M. D. Current-induced torques and interfacial spin–orbit coupling. Phys. Rev. B 88, 214417 (2013).

    Article  Google Scholar 

  46. Kurebayashi, H. et al. An antidamping spin–orbit torque originating from the Berry curvature. Nature Nanotech. 9, 211–217 (2014).

    Article  CAS  Google Scholar 

  47. Jeong, J. et al. Suppression of metal–insulator transition in VO2 by electric field–induced oxygen vacancy formation. Science 339, 1402–1405 (2013).

    Article  CAS  Google Scholar 

  48. Bauer, U., Emori, S. & Beach, G. S. Voltage-controlled domain wall traps in ferromagnetic nanowires. Nature Nanotech. 8, 411–416 (2013).

    Article  CAS  Google Scholar 

  49. Yu, G. et al. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nature Nanotech. 9, 548–554 (2014).

    Article  CAS  Google Scholar 

  50. Narayanapillai, K. et al. Current-driven spin orbit field in LaAlO3/SrTiO3 heterostructures. Appl. Phys. Lett. 105, 162405 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Research Foundation (NRF), Prime Minister's Office, Singapore, under its Competitive Research Programme (CRP award no. NRF-CRP12-2013-01 and NRF-CRP4-2008-06). K.L. acknowledges financial support from NRF (NRF-2013R1A2A2A01013188) and the MEST Pioneer Research Center Program (2011-0027905). H.W.L. acknowledges financial support from NRF (NRF-2011-0030046 and NRF-2013R1A2A2A05006237) and MOTIE (10044723). D.Y., W.N. and J.P. acknowledge financial support by the NCRI Program (2009-0081576) and MPK Program (2011-0031558) through the NRF funded by the Ministry of Science, Information Communication Technology, and Future Planning, Korea (MSIP). P.A.L. is supported by Pohang University of Science and Technology and MSIP.

Author information

Authors and Affiliations

Authors

Contributions

X.Q. and H.Y. planned the study. X.Q. and K.N. fabricated devices. X.Q. measured transport properties. Y.W. helped with characterization. D-H.Y., W-S.N. and J-H.P. carried out X-ray measurements. All authors discussed the results. X.Q., K-J.L., H-W.L. and H.Y. wrote the manuscript. H.Y. supervised the project.

Corresponding author

Correspondence to Hyunsoo Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 707 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, X., Narayanapillai, K., Wu, Y. et al. Spin–orbit-torque engineering via oxygen manipulation. Nature Nanotech 10, 333–338 (2015). https://doi.org/10.1038/nnano.2015.18

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.18

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing