Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature

Abstract

Ultraviolet laser radiation has been adopted in a wide range of applications as diverse as water purification, flexible displays, data storage, sterilization, diagnosis and bioagent detection1,2,3. Success in developing semiconductor-based, compact ultraviolet laser sources, however, has been extremely limited. Here, we report that defect-free disordered AlGaN core–shell nanowire arrays, formed directly on a Si substrate, can be used to achieve highly stable, electrically pumped lasers across the entire ultraviolet AII (UV-AII) band (320–340 nm) at low temperatures. The laser threshold is in the range of tens of amps per centimetre squared, which is nearly three orders of magnitude lower than those of previously reported quantum-well lasers4,5,6. This work also reports the first demonstration of electrically injected AlGaN-based ultraviolet lasers monolithically grown on a Si substrate, and offers a new avenue for achieving semiconductor lasers in the ultraviolet B (UV-B) (280–320 nm) and ultraviolet C (UV-C) (<280 nm) bands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simulation of AlGaN nanowire random cavity, and optical and structural characterization.
Figure 2: Characterization of a single AlGaN nanowire.
Figure 3: Device performance and characterization.

Similar content being viewed by others

References

  1. Lindenauer, K. G. & Darby, J. L. Ultraviolet disinfection of wastewater: effect of dose on subsequent photoreactivation. Water Res. 28, 805–817 (1994).

    Article  CAS  Google Scholar 

  2. Chwirot, B. W. et al. Ultraviolet laser-induced fluorescence of human stomach tissues: detection of cancer tissues by imaging techniques. Lasers Surg. Med. 21, 149–158 (1997).

    Article  CAS  Google Scholar 

  3. Ramanujam, P. S. & Berg, R. H. Photodimerization in dipeptides for high capacity optical digital storage. Appl. Phys. Lett. 85, 1665–1667 (2004).

    Article  CAS  Google Scholar 

  4. Yoshida, H., Yamashita, Y., Kuwabara, M. & Kan, H. Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode. Appl. Phys. Lett. 93, 241106 (2008).

    Article  Google Scholar 

  5. Kneissl, M., Treat, D. W., Teepe, M., Miyashita, N. & Johnson, N. M. Ultraviolet AlGaN multiple-quantum-well laser diodes. Appl. Phys. Lett. 82, 4441–4443 (2003).

    Article  CAS  Google Scholar 

  6. Yoshida, H., Yamashita, Y., Kuwabara, M. & Kan, H. A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode. Nature Photon. 2, 551–554 (2008).

    Article  CAS  Google Scholar 

  7. Iida, K. et al. 350.9 nm UV laser diode grown on low-dislocation-density AlGaN. Jpn. J. Appl. Phys. 43, L499 (2004).

    Article  CAS  Google Scholar 

  8. Masui, S. et al. 365 nm ultraviolet laser diodes composed of quaternary AlInGaN alloy. Jpn. J. Appl. Phys. 42, L1318 (2003).

    Article  CAS  Google Scholar 

  9. Yoshida, H., Takagi, Y., Kuwabara, M., Amano, H. & Kan, H. Entirely crack-free ultraviolet GaN/AlGaN laser diodes grown on 2-in. sapphire substrate. Jpn. J. Appl. Phys. 46, 5782 (2007).

    Article  CAS  Google Scholar 

  10. Haeger, D. A. et al. 384 nm laser diode grown on a ( ) semipolar relaxed AlGaN buffer layer. Appl. Phys. Lett. 100, 161107 (2012).

    Article  Google Scholar 

  11. Guo, W. et al. Stimulated emission and optical gain in AlGaN heterostructures grown on bulk AlN substrates. J. Appl. Phys. 115, 103108 (2014).

    Article  Google Scholar 

  12. Francesco Pecora, E. et al. Sub-250 nm light emission and optical gain in AlGaN materials. J. Appl. Phys. 113, 013106 (2013).

    Article  Google Scholar 

  13. Zhang, J., Zhao, H. & Tansu, N. Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers. Appl. Phys. Lett. 97, 111105 (2010).

    Article  Google Scholar 

  14. Zhang, J., Zhao, H. & Tansu, N. Large optical gain AlGaN-delta-GaN quantum wells laser active regions in mid- and deep-ultraviolet spectral regimes. Appl. Phys. Lett. 98, 171111 (2011).

    Article  Google Scholar 

  15. Park, S-H. Optical gain characteristics of non-polar Al-rich AlGaN/AlN quantum well structures. J. Appl. Phys. 110, 063105 (2011).

    Article  Google Scholar 

  16. Gradečak, S., Qian, F., Li, Y., Park, H-G. & Lieber, C. M. GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett. 87, 173111 (2005).

    Article  Google Scholar 

  17. Johnson, J. C. et al. Single gallium nitride nanowire lasers. Nature Mater. 1, 106–110 (2002).

    Article  CAS  Google Scholar 

  18. Xu, H. et al. Single-mode lasing of GaN nanowire-pairs. Appl. Phys. Lett. 101, 113106 (2012).

    Article  Google Scholar 

  19. Heo, J., Jahangir, S., Xiao, B. & Bhattacharya, P. Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity. Nano Lett. 13, 2376–2380 (2013).

    Article  CAS  Google Scholar 

  20. Wu, C. Y. et al. Plasmonic green nanolaser based on a metal-oxide-semiconductor structure. Nano Lett. 11, 4256–4260 (2011).

    Article  CAS  Google Scholar 

  21. Kouno, T., Kishino, K., Suzuki, T. & Sakai, M. Lasing actions in GaN tiny hexagonal nanoring resonators. IEEE Photon. J. 2, 1027–1033 (2010).

    Article  Google Scholar 

  22. Frost, T. et al. Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon. Nano Lett. 14, 4535–4541 (2014).

    Article  CAS  Google Scholar 

  23. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    Article  CAS  Google Scholar 

  24. Matsubara, H. et al. GaN photonic-crystal surface-emitting laser at blue–violet wavelengths. Science 319, 445–457 (2008).

    Article  CAS  Google Scholar 

  25. Sakai, M. et al. Random laser action in GaN nanocolumns. Appl. Phys. Lett. 97, 151109 (2010).

    Article  Google Scholar 

  26. Yu, S. F., Yuen, C., Lau, S. P., Park, W. I. & Yi, G-C. Random laser action in ZnO nanorod arrays embedded in ZnO epilayers. Appl. Phys. Lett. 84, 3241–3243 (2004).

    Article  CAS  Google Scholar 

  27. Liu, C. Y. et al. Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires. Appl. Phys. Lett. 99, 063115 (2011).

    Article  Google Scholar 

  28. Liu, X. Y., Shan, C. X., Wang, S. P., Zhang, Z. Z. & Shen, D. Z. Electrically pumped random lasers fabricated from ZnO nanowire arrays. Nanoscale 4, 2843–2846 (2012).

    Article  CAS  Google Scholar 

  29. Chu, S. et al. Electrically pumped waveguide lasing from ZnO nanowires. Nature Nanotech. 6, 506–510 (2011).

    Article  CAS  Google Scholar 

  30. Lo, M-H., Cheng, Y-J., Liu, M-C., Kuo, H-C. & Wang, S. C. Lasing at exciton transition in optically pumped gallium nitride nanopillars. Opt. Express 19, 17960–17965 (2011).

    Article  CAS  Google Scholar 

  31. Nguyen, H. P. T. et al. Breaking the carrier injection bottleneck of phosphor-free nanowire white light-emitting diodes. Nano Lett. 13, 5437–5442 (2013).

    Article  CAS  Google Scholar 

  32. Sampath, A. V. et al. Growth of AlGaN containing nanometer scale compositional inhomogeneities for ultraviolet light emitters. J. Vac. Sci. Technol. B 29, 03C134 (2011).

    Article  Google Scholar 

  33. Pierret, A., Bougerol, C., Gayral, B., Kociak, M. & Daudin, B. Probing alloy composition gradient and nanometer-scale carrier localization in single AlGaN nanowires by nanocathodoluminescence. Nanotechnology 24, 305703 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada and US Army Research Office under Grant W911NF-12-1-0477. Part of the work was performed in the McGill University Micro Fabrication Facility.

Author information

Authors and Affiliations

Authors

Contributions

K.H.L. fabricated the devices and carried out the experimental measurements. X.L. performed the device design and contributed to the theoretical calculations, device fabrication and measurements. K.H.L. and X.L. made equal contributions. S.Z. conducted the MBE growth of nanowires and contributed to the TEM analysis. Q.W. contributed to the preliminary works on device characteristics. Z.M. conceived the experiments and supervised and led the project. The paper was written by K.H.L. and Z.M. with contributions from the other authors.

Corresponding author

Correspondence to Z. Mi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1043 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Liu, X., Wang, Q. et al. Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature. Nature Nanotech 10, 140–144 (2015). https://doi.org/10.1038/nnano.2014.308

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.308

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing