Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanoscale nuclear magnetic imaging with chemical contrast

Abstract

Scanning probe microscopy is one of the most versatile windows into the nanoworld, providing imaging access to a variety of electronic1, dielectric2, magnetic3 and topographic4,5 sample properties, depending on the probe used. Here, we demonstrate a scanning probe imaging method that extends the range of accessible quantities to label-free imaging of chemical species while operating on arbitrary samples—including insulating materials—under ambient conditions. Moreover, its sensitivity extends below the surface of a sample, allowing for imaging of subsurface features. We achieve these results by recording NMR signals from a sample surface with a recently introduced scanning probe, a single nitrogen–vacancy centre in diamond. We demonstrate NMR imaging with 10 nm resolution and achieve chemically specific contrast by separating fluorine from hydrogen-rich regions. Our result opens the door to scanning probe imaging of the chemical composition and molecular structure of arbitrary samples. A method with these abilities will find widespread application in materials science, even on biological specimens down to the level of single macromolecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental configuration.
Figure 2: Measurement scheme for NMR spectroscopy.
Figure 3: Magnetic resonance imaging of a nanoscale structure.
Figure 4: Imaging of a buried layer using chemical contrast.

Similar content being viewed by others

References

  1. Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40, 178–180 (1982).

    Article  CAS  Google Scholar 

  2. Betzig, E. & Chichester, R. J. Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1425 (1993).

    Article  CAS  Google Scholar 

  3. Martin, Y. & Wickramasinghe, H. K. Magnetic imaging by ‘force microscopy’ with 1000 Å resolution. Appl. Phys. Lett. 50, 1455–1457 (1987).

    Article  Google Scholar 

  4. Giessibl, F. J. Atomic resolution of the silicon (111)-(7×7) surface by atomic force microscopy. Science 267, 68–71 (1995).

    Article  CAS  Google Scholar 

  5. Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    Article  CAS  Google Scholar 

  6. Sidles, J. A. Noninductive detection of single-proton magnetic resonance. Appl. Phys. Lett. 58, 2854–2856 (1991).

    Article  Google Scholar 

  7. Degen, C. L., Poggio, M., Mamin, H. J., Rettner, C. T. & Rugar, D. Nanoscale magnetic resonance imaging. Proc. Natl Acad. Sci. USA 106, 1313–1317 (2009).

    Article  CAS  Google Scholar 

  8. Chernobrod, B. M. & Berman, G. P. Spin microscope based on optically detected magnetic resonance. J. Appl. Phys. 97, 014903 (2005).

    Article  Google Scholar 

  9. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  CAS  Google Scholar 

  10. Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008).

    Article  CAS  Google Scholar 

  11. Kolkowitz, S., Unterreithmeier, Q. P., Bennett, S. D. & Lukin, M. D. Sensing distant nuclear spins with a single electron spin. Phys. Rev. Lett. 109, 137601 (2012).

    Article  Google Scholar 

  12. Zhao, N. et al. Sensing single remote nuclear spins. Nature Nanotech. 7, 657–662 (2012).

    Article  CAS  Google Scholar 

  13. Taminiau, T. H. et al. Detection and control of individual nuclear spins using a weakly coupled electron spin. Phys. Rev. Lett. 109, 137602 (2012).

    Article  CAS  Google Scholar 

  14. Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science 339, 561–563 (2013).

    Article  CAS  Google Scholar 

  15. Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen–vacancy spin sensor. Science 339, 557–560 (2013).

    Article  CAS  Google Scholar 

  16. Loretz, M., Pezzagna, S., Meijer, J. & Degen, C. L. Nanoscale nuclear magnetic resonance with a 1.9-nm-deep nitrogen–vacancy sensor. Appl. Phys. Lett. 104, 033102 (2014).

    Article  Google Scholar 

  17. Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen–vacancy centres. Nature Nanotech 7, 320–324 (2012).

    Article  CAS  Google Scholar 

  18. Rondin, L. et al. Stray-field imaging of magnetic vortices with a single diamond spin. Nature Commun. 4, 2279 (2013).

    Article  CAS  Google Scholar 

  19. Cywinski, L., Lutchyn, R. M., Nave, C. P. & Das Sarma, S. How to enhance dephasing time in superconducting qubits. Phys. Rev. B 77, 174509 (2008).

    Article  Google Scholar 

  20. Kotler, S., Akerman, N., Glickman, Y., Keselman, A. & Ozeri, R. Single-ion quantum lock-in amplifier. Nature 473, 61–65 (2011).

    Article  CAS  Google Scholar 

  21. Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).

    Article  CAS  Google Scholar 

  22. Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010).

    Article  CAS  Google Scholar 

  23. Cai, J., Jelezko, F., Plenio, M. B. & Retzker, A. Diamond-based single-molecule magnetic resonance spectroscopy. New J. Phys. 15, 013020 (2013).

    Article  Google Scholar 

  24. Zhao, N., Hu, J-L., Ho, S-W., Wan, J. T. K. & Liu, R. B. Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond. Nature Nanotech. 6, 242–246 (2011).

    Article  CAS  Google Scholar 

  25. Grinolds, M. S. et al. Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. Nature Nanotech. 9, 279–284 (2014).

    Article  CAS  Google Scholar 

  26. Urbakh, M., Klafter, J., Gourdon, D. & Israelachvili, J. The nonlinear nature of friction. Nature 430, 525–528 (2004).

    Article  CAS  Google Scholar 

  27. Nakai, Y., Ishida, K., Kamihara, Y., Hirano, M. & Hosono, H. Evolution from itinerant antiferromagnet to unconventional superconductor with fluorine doping in LaFeAs (O1–x Fx) revealed by 75As and 139La nuclear magnetic resonance. J. Phys. Soc. Jpn 77, 073701 (2008).

    Article  Google Scholar 

  28. Bulaevskii, L. N., Ginzburg, V. L. & Sobyanin, A. A. Macroscopic theory of superconductors with small coherence length. Phys. C Supercond. 152, 378–388 (1988).

    Article  CAS  Google Scholar 

  29. Steinert, S. et al. Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nature Commun. 4, 1607 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the EU (via ERC grant SQUTEC and integrated projects Diadems and SIQS), DARPA (Quasar), the DFG (via research group 1493 and SFB/TR21) and contract research of the Baden–Württemberg Foundation. The authors thank K. Karrai and the attocube team for discussions and technical support.

Author information

Authors and Affiliations

Authors

Contributions

F.R. and J.W. conceived the idea and supervised the project. T.H. conducted the experiments and analysed the data. D.S-L. and T.H. prepared the samples. T.H., F.R. and J.W. wrote the manuscript.

Corresponding author

Correspondence to F. Reinhard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1088 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Häberle, T., Schmid-Lorch, D., Reinhard, F. et al. Nanoscale nuclear magnetic imaging with chemical contrast. Nature Nanotech 10, 125–128 (2015). https://doi.org/10.1038/nnano.2014.299

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.299

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing