Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-blinking quantum dot with a plasmonic nanoshell resonator

Subjects

Abstract

Colloidal semiconductor quantum dots are fluorescent nanocrystals exhibiting exceptional optical properties, but their emission intensity strongly depends on their charging state and local environment. This leads to blinking at the single-particle level or even complete fluorescence quenching, and limits the applications of quantum dots as fluorescent particles. Here, we show that a single quantum dot encapsulated in a silica shell coated with a continuous gold nanoshell provides a system with a stable and Poissonian emission at room temperature that is preserved regardless of drastic changes in the local environment. This novel hybrid quantum dot/silica/gold structure behaves as a plasmonic resonator with a strong Purcell factor, in very good agreement with simulations. The gold nanoshell also acts as a shield that protects the quantum dot fluorescence and enhances its resistance to high-power photoexcitation or high-energy electron beams. This plasmonic fluorescent resonator opens the way to a new family of plasmonic nanoemitters with robust optical properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of quantum dot/SiO2/Au hybrid (golden QD) synthesis.
Figure 2: Numerical simulations of the optical properties of golden QDs.
Figure 3: Single-particle spectroscopy.
Figure 4: Photostability.

Similar content being viewed by others

References

  1. Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R. & Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nature Methods 5, 763–775 (2008).

    Article  CAS  Google Scholar 

  2. van Sark, W. G. J. H. M. et al. Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy. J. Phys. Chem. B 105, 8281–8284 (2001).

    Article  CAS  Google Scholar 

  3. Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).

    Article  CAS  Google Scholar 

  4. Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A. & Nesbitt, D. J. Nonexponential ‘blinking’ kinetics of single CdSe quantum dots: a universal power law behavior. J. Chem. Phys. 112, 3117–3120 (2000).

    Article  CAS  Google Scholar 

  5. Lim, S. J., Kim, W., Jung, S., Seo, J. & Shin, S. K. Anisotropic etching of semiconductor nanocrystals. Chem. Mater. 23, 5029–5036 (2011).

    Article  CAS  Google Scholar 

  6. Kalyuzhny, G. & Murray, R. W. Ligand effects on optical properties of CdSe nanocrystals. J. Phys. Chem. B 109, 7012–7021 (2005).

    Article  CAS  Google Scholar 

  7. Son, D. H., Hughes, S. M., Yin, Y. & Alivisatos, P. A. Cation exchange reactions in ionic nanocrystals. Science 306, 1009–1012 (2004).

    Article  CAS  Google Scholar 

  8. Cragg, G. E. & Efros, A. L. Suppression of Auger processes in confined structures. Nano Lett. 10, 313–317 (2009).

    Article  Google Scholar 

  9. Spinicelli, P. et al. Bright and grey states in CdSe–CdS nanocrystals exhibiting strongly reduced blinking. Phys. Rev. Lett. 102, 136801 (2009).

    Article  CAS  Google Scholar 

  10. Mahler, B. et al. Towards non-blinking colloidal quantum dots. Nature Mater. 7, 659–664 (2008).

    Article  CAS  Google Scholar 

  11. Javaux, C. et al. Thermal activation of non-radiative Auger recombination in charged colloidal nanocrystals. Nature Nanotech. 8, 206–212 (2013).

    Article  CAS  Google Scholar 

  12. Graf, C. & van Blaaderen, A. Metallodielectric colloidal core–shell particles for photonic applications. Langmuir 18, 524–534 (2001).

    Article  Google Scholar 

  13. Brinson, B. E. et al. Nanoshells made easy: improving Au layer growth on nanoparticle surfaces. Langmuir 24, 14166–14171 (2008).

    Article  CAS  Google Scholar 

  14. Canneson, D. et al. Strong Purcell effect observed in single thick-shell CdSe/CdS nanocrystals coupled to localized surface plasmons. Phys. Rev. B 84, 245423 (2011).

    Article  Google Scholar 

  15. Drexhage, K. H., Kuhn, H. & Schäfer, F. P. Variation of the fluorescence decay time of a molecule in front of a mirror. Ber. Bunsenges. Phys. Chem. 72, 329 (1968).

    Google Scholar 

  16. Chance, R. R., Prock, A. & Silbey, R. Lifetime of an emitting molecule near a partially reflecting surface. J. Chem. Phys. 60, 2744–2748 (1974).

    Article  CAS  Google Scholar 

  17. Gersten, J. & Nitzan, A. Spectroscopic properties of molecules interacting with small dielectric particles. J. Chem. Phys. 75, 1139–1152 (1981).

    Article  CAS  Google Scholar 

  18. Kinkhabwala, A. et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photon. 3, 654–657 (2009).

    Article  CAS  Google Scholar 

  19. Munechika, K. et al. Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms. Nano Lett. 10, 2598–2603 (2010).

    Article  CAS  Google Scholar 

  20. Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).

    Article  Google Scholar 

  21. Kühn, S., Håkanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

    Article  Google Scholar 

  22. Belacel, C. et al. Controlling spontaneous emission with plasmonic optical patch antennas. Nano Lett. 13, 1516–1521 (2013).

    Article  CAS  Google Scholar 

  23. Dubertret, B., Calame, M. & Libchaber, A. J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nature Biotechnol. 19, 365–370 (2001).

    Article  CAS  Google Scholar 

  24. Wylie, J. M. & Sipe, J. E. Quantum electrodynamics near an interface. Phys. Rev. A 30, 1185–1193 (1984).

    Article  CAS  Google Scholar 

  25. Shimizu, K. T., Woo, W. K., Fisher, B. R., Eisler, H. J. & Bawendi, M. G. Surface-enhanced emission from single semiconductor nanocrystals. Phys. Rev. Lett. 89, 117401 (2002).

    Article  CAS  Google Scholar 

  26. Ito, Y., Matsuda, K. & Kanemitsu, Y. Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces. Phys. Rev. B 75, 033309 (2007).

    Article  Google Scholar 

  27. LeBlanc, S. J., McClanahan, M. R., Jones, M. & Moyer, P. J. Enhancement of multiphoton emission from single CdSe quantum dots coupled to gold films. Nano Lett. 13, 1662–1669 (2013).

    Article  CAS  Google Scholar 

  28. Song, J.-H., Atay, T., Shi, S., Urabe, H. & Nurmikko, A. V. Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons. Nano Lett. 5, 1557–1561 (2005).

    Article  CAS  Google Scholar 

  29. Pompa, P. P. et al. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nature Nanotech. 1, 126–130 (2006).

    Article  CAS  Google Scholar 

  30. Chan, Y.-H. et al. Using patterned arrays of metal nanoparticles to probe plasmon enhanced luminescence of CdSe quantum dots. ACS Nano 3, 1735–1744 (2009).

    Article  CAS  Google Scholar 

  31. Liu, N., Prall, B. S. & Klimov, V. I. Hybrid gold/silica/nanocrystal–quantum-dot superstructures: synthesis and analysis of semiconductor–metal interactions. J. Am. Chem. Soc. 128, 15362–15363 (2006).

    Article  CAS  Google Scholar 

  32. Ma, X., Tan, H., Kipp, T. & Mews, A. Fluorescence enhancement, blinking suppression, and gray states of individual semiconductor nanocrystals close to gold nanoparticles. Nano Lett. 10, 4166–4174 (2010).

    Article  CAS  Google Scholar 

  33. Ratchford, D., Shafiei, F., Kim, S., Gray, S. K. & Li, X. Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle. Nano Lett. 11, 1049–1054 (2011).

    Article  CAS  Google Scholar 

  34. Jin, Y. & Gao, X. Plasmonic fluorescent quantum dots. Nature Nanotech. 4, 571–576 (2009).

    Article  CAS  Google Scholar 

  35. Enderlein, J. Theoretical study of single molecule fluorescence in a metallic nanocavity. Appl. Phys. Lett. 80, 315–317 (2002).

    Article  CAS  Google Scholar 

  36. Prodan, E., Radloff, C., Halas, N. J. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

    Article  CAS  Google Scholar 

  37. Miao, X. Y., Brener, I. & Luk, T. S. Nanocomposite plasmonic fluorescence emitters with core/shell configurations. J. Opt. Soc. Am. B 27, 1561–1570 (2010).

    Article  CAS  Google Scholar 

  38. Mokari, T., Sztrum, C. G., Salant, A., Rabani, E. & Banin, U. Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nature Mater. 4, 855–863 (2005).

    Article  CAS  Google Scholar 

  39. Darbandi, M., Thomann, R. & Nann, T. Single quantum dots in silica spheres by microemulsion synthesis. Chem. Mater. 17, 5720–5725 (2005).

    Article  CAS  Google Scholar 

  40. Koole, R. et al. On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method. Chem. Mater. 20, 2503–2512 (2008).

    Article  CAS  Google Scholar 

  41. Chen, Y. et al. ‘Giant’ multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130, 5026–5027 (2008).

    Article  CAS  Google Scholar 

  42. Arroyo-Camejo, S. et al. Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers in diamond nanocrystals. ACS Nano 7, 10912–10919 (2013).

    Article  CAS  Google Scholar 

  43. Wang, F., Deng, R. & Liu, X. Preparation of core–shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nature Protoc. 9, 1634–1644 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agence Nationale de la Recherche (ANR) through projects QDOTICS, and the Région Ile-de-France through the C'nano project ‘NanoAnt’. This work has also been supported by the Région Ile-de-France through the DIM Nano-K.

Author information

Authors and Affiliations

Authors

Contributions

J.J.G. and F.M. suggested the use of a gold nanoshell and supervised the theoretical analysis conducted by B.H. B.J. performed the synthesis of the golden quantum dots. E.G., N.L. and B.D. co-supervised B.J. P.S. carried out the spectroscopic experiments. X.Z. obtained the TEM images. E.G., B.D. and B.H. wrote the manuscript with help from the other authors. M.N. synthesized the thick-shell quantum dots. J.P.H. developed the numerical codes for the electromagnetic simulations.

Corresponding authors

Correspondence to Jean-Jacques Greffet or Benoit Dubertret.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 973 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, B., Giovanelli, E., Habert, B. et al. Non-blinking quantum dot with a plasmonic nanoshell resonator. Nature Nanotech 10, 170–175 (2015). https://doi.org/10.1038/nnano.2014.298

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.298

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing