Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hierarchically arranged helical fibre actuators driven by solvents and vapours

Abstract

Mechanical responsiveness in many plants is produced by helical organizations of cellulose microfibrils. However, simple mimicry of these naturally occurring helical structures does not produce artificial materials with the desired tunable actuations. Here, we show that actuating fibres that respond to solvent and vapour stimuli can be created through the hierarchical and helical assembly of aligned carbon nanotubes. Primary fibres consisting of helical assemblies of multiwalled carbon nanotubes are twisted together to form the helical actuating fibres. The nanoscale gaps between the nanotubes and micrometre-scale gaps among the primary fibres contribute to the rapid response and large actuation stroke of the actuating fibres. The compact coils allow the actuating fibre to rotate reversibly. We show that these fibres, which are lightweight, flexible and strong, are suitable for a variety of applications such as energy-harvesting generators, deformable sensing springs and smart textiles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Helically assembled MWCNT fibres with multiscale gap structures.
Figure 2: Actuation performances of helical fibres.
Figure 3: Helically arranged gaps at multiple scales formed in the HHF.
Figure 4: Contractive deformations of smart springs fabricated from HHFs in response to vapour.
Figure 5: Rapid actuation of smart textile woven from HHFs.

Similar content being viewed by others

References

  1. Elbaum, R., Zaltzman, L., Burgert, I. & Fratzl, P. The role of wheat awns in the seed dispersal unit. Science 316, 884–886 (2007).

    Article  CAS  Google Scholar 

  2. Evangelista, D., Hotton, S. & Dumais, J. The mechanics of explosive dispersal and self-burial in the seeds of the filaree, Erodium cicutarium (Geraniaceae). J. Exp. Biol. 214, 521–529 (2011).

    Article  Google Scholar 

  3. Fratzl, P. & Barth, F. G. Biomaterial systems for mechanosensing and actuation. Nature 462, 442–448 (2009).

    Article  CAS  Google Scholar 

  4. Dumais, J. & Forterre, Y. ‘Vegetable dynamicks’: the role of water in plant movements. Annu. Rev. Fluid Mech. 44, 453–478 (2012).

    Article  Google Scholar 

  5. Forterre, Y., Skotheim, J. M., Dumais, J. & Mahadevan, L. How the Venus flytrap snaps. Nature 433, 421–425 (2005).

    Article  CAS  Google Scholar 

  6. Schulgasser, K. & Witztum, A. The hierarchy of chirality. J. Theor. Biol. 230, 281–288 (2004).

    Article  Google Scholar 

  7. Fratzl, P. & Weinkamer, R. Nature's hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007).

    Article  CAS  Google Scholar 

  8. Plaza, N., Zelinka, S. L., Stone, D. S. & Jakes, J. E. Plant-based torsional actuator with memory. Smart Mater. Struct. 22, 072001 (2013).

    Article  Google Scholar 

  9. Wang, J. S. et al. Hierarchical chirality transfer in the growth of towel gourd tendrils. Sci. Rep. 3, 3102 (2013).

    Article  Google Scholar 

  10. Abraham, Y. et al. Tilted cellulose arrangement as a novel mechanism for hygroscopic coiling in the stork's bill awn. J. R. Soc. Interface 9, 640–647 (2012).

    Article  Google Scholar 

  11. Jung, W., Kim, W. & Kim, H. Y. Self-burial mechanics of hygroscopically responsive awns. Integr. Comp. Biol. 54, 105 (2014).

    Article  Google Scholar 

  12. Iamsaard, S. et al. Conversion of light into macroscopic helical motion. Nature Chem. 6, 229–235 (2014).

    Article  CAS  Google Scholar 

  13. Fang, Y., Pence, T. J. & Tan, X. Fiber-directed conjugated-polymer torsional actuator: nonlinear elasticity modeling and experimental validation. IEEE/ASME Trans. Mechatron. 16, 656–664 (2011).

    Article  Google Scholar 

  14. Mirvakili, S. M. et al. Niobium nanowire yarns and their application as artificial muscles. Adv. Funct. Mater. 23, 4311–4316 (2013).

    Article  CAS  Google Scholar 

  15. Foroughi, J. et al. Torsional carbon nanotube artificial muscles. Science 334, 494–497 (2011).

    Article  CAS  Google Scholar 

  16. Mirfakhrai, T. et al. Electrochemical actuation of carbon nanotube yarns. Smart Mater. Struct. 16, S243–S249 (2007).

    Article  CAS  Google Scholar 

  17. Schulz, M. Materials science. Speeding up artificial muscles. Science 338, 893–894 (2012).

    Article  CAS  Google Scholar 

  18. Yuan, J. & Poulin, P. Fibers do the twist. Science 343, 845–846 (2014).

    Article  CAS  Google Scholar 

  19. Lima, M. D. et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science 338, 928–932 (2012).

    Article  CAS  Google Scholar 

  20. Cheng, H. et al. Moisture-activated torsional graphene-fiber motor. Adv. Mater. 26, 2909–2913 (2014).

    Article  CAS  Google Scholar 

  21. Haines, C. S. et al. Artificial muscles from fishing line and sewing thread. Science 343, 868–872 (2014).

    Article  CAS  Google Scholar 

  22. Sun, X. M., Chen, T., Yang, Z. B. & Peng, H. S. The alignment of carbon nanotubes: an effective route to extend their excellent properties to macroscopic scale. Acc. Chem. Res. 46, 539–549 (2013).

    Article  CAS  Google Scholar 

  23. Mirfakhrai, T., Madden, J. & Baughman, R. Polymer artificial muscles. Mater. Today 10, 30–38 (2007).

    Article  CAS  Google Scholar 

  24. Chun, K. Y. et al. Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk. Nature Commun. 5, 3322 (2014).

    Article  Google Scholar 

  25. de Haan, L. T., Verjans, J. M., Broer, D. J., Bastiaansen, C. W. & Schenning, A. P. Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend, fold, and curl. J. Am. Chem. Soc. 136, 10585–10588 (2014).

    Article  CAS  Google Scholar 

  26. Therien-Aubin, H., Wu, Z. L., Nie, Z. & Kumacheva, E. Multiple shape transformations of composite hydrogel sheets. J. Am. Chem. Soc. 135, 4834–4839 (2013).

    Article  CAS  Google Scholar 

  27. Lee, W. E., Jin, Y. J., Park, L. S. & Kwak, G. Fluorescent actuator based on microporous conjugated polymer with intramolecular stack structure. Adv. Mater. 24, 5604–5609 (2012).

    Article  CAS  Google Scholar 

  28. Skotheim, J. M. & Mahadevan, L. Physical limits and design principles for plant and fungal movements. Science 308, 1308–1310 (2005).

    Article  CAS  Google Scholar 

  29. Qiu, J. et al. Liquid infiltration into carbon nanotube fibers: effect on structure and electrical properties. ACS Nano 7, 8412–8422 (2013).

    Article  CAS  Google Scholar 

  30. Huber, J., Fleck, N. & Ashby, M. The selection of mechanical actuators based on performance indices. Proc. R. Soc. Lond. A 453, 2185–2205 (1997).

    Article  Google Scholar 

  31. Ma, M., Guo, L., Anderson, D. G. & Langer, R. Bio-inspired polymer composite actuator and generator driven by water gradients. Science 339, 186–189 (2013).

    Article  CAS  Google Scholar 

  32. Xu, Z., Sun, H., Zhao, X. & Gao, C. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 25, 188–193 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R.H. Baughman and S. Fang for their suggestions. This work was supported by Ministry of Science and Technology of the People's Republic of China (2011CB932503), National Natural Science Foundation of China (21225417), Science And Technology Commission Of Shanghai Municipality (12nm0503200, 15XD1500400), the Fok Ying Tong Education Foundation, the Program for Special Appointments of Professors at Shanghai Institutions of Higher Learning and the Program for Outstanding Young Scholars from the Organization Department of the Zhong Gong Central Committee.

Author information

Authors and Affiliations

Authors

Contributions

H.P. conceived and designed the research project. P.C., Y.X., S.H., S.P. and J.D. performed the experiments. P.C., X.S., D.C. and H.P. analysed the data. P.C. and H.P. wrote the paper.

Corresponding author

Correspondence to Huisheng Peng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5192 kb)

Supplementary information

Supplementary Movie 1 (MOV 3844 kb)

Supplementary information

Supplementary Movie 2 (MOV 2476 kb)

Supplementary information

Supplementary Movie 3 (MOV 1943 kb)

Supplementary information

Supplementary Movie 4 (MOV 4688 kb)

Supplementary information

Supplementary Movie 5 (MOV 153 kb)

Supplementary information

Supplementary Movie 6 (MOV 4229 kb)

Supplementary information

Supplementary Movie 7 (MOV 3826 kb)

Supplementary information

Supplementary Movie 8 (MOV 4966 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Xu, Y., He, S. et al. Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nature Nanotech 10, 1077–1083 (2015). https://doi.org/10.1038/nnano.2015.198

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.198

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing