Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhancement of the anisotropic photocurrent in ferroelectric oxides by strain gradients

Abstract

The phase separation of multiple competing structural/ferroelectric phases has attracted particular attention owing to its excellent electromechanical properties. Little is known, however, about the strain-gradient-induced electronic phenomena at the interface of competing structural phases. Here, we investigate the polymorphic phase interface of bismuth ferrites using spatially resolved photocurrent measurements, present the observation of a large enhancement of the anisotropic interfacial photocurrent by two orders of magnitude, and discuss the possible mechanism on the basis of the flexoelectric effect. Nanoscale characterizations of the photosensitive area through position-sensitive angle-resolved piezoresponse force microscopy and electron holography techniques, in conjunction with phase field simulation, reveal that regularly ordered dipole-charged domain walls emerge. These findings offer practical implications for complex oxide optoelectronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enhancement of photocurrent in mixed-phase areas.
Figure 2: Light polarization dependence of the photocurrent.
Figure 3: Estimation of photocurrent enhancement at the polymorphic phase interfaces.
Figure 4: Position-sensitive angle-resolved PFM in a mixed-phase area.
Figure 5: Phase field simulation to explore the flexoelectric effect at the interfacial region.
Figure 6: Strain and total charge density maps of a mixed-phase area obtained using inline electron holography.

Similar content being viewed by others

References

  1. Tagantsev, A. K. Electric polarization in crystals and its response to thermal and elastic perturbations. Phase Transit. 35, 119–203 (1991).

    Article  CAS  Google Scholar 

  2. Kogan, S. M. Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov. Phys. Solid State 5, 2069–2070 (1964).

    Google Scholar 

  3. Catalan, G., Noheda, B., McAneney, J., Sinnamon, L. J. & Gregg, J. M. Strain gradients in epitaxial ferroelectrics. Phys. Rev. B 72, 020102 (2005).

    Article  Google Scholar 

  4. Cronin, D. W., Petschek, R. G. & Terentjev, E. M. Second-order flexoelectric effect in chiral nematic liquid crystals. J. Chem. Phys. 98, 9199 (1993).

    Article  CAS  Google Scholar 

  5. Zubko, P., Catalan, G., Buckley, A., Welche, P. R. L. & Scott, J. F. Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 99, 167601 (2007).

    Article  CAS  Google Scholar 

  6. Nguyen, T. D., Mao, S., Yeh, Y.-W., Purohit, P. K. & McAlpine, M. C. Nanoscale flexoelectricity. Adv. Mater. 25, 946–974 (2013).

    Article  CAS  Google Scholar 

  7. Zubko, P., Catalan, G. & Tagantsev, A. K. Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43, 387–421 (2013).

    Article  CAS  Google Scholar 

  8. Scott, J. F. Flexoelectric spectroscopy. J. Phys. Condens. Matter 25, 331001 (2013).

    Article  CAS  Google Scholar 

  9. Ma, W. & Cross, L. E. Flexoelectric polarization of barium strontium titanate in the paraelectric state. Appl. Phys. Lett. 81, 3440–3442 (2002).

    Article  CAS  Google Scholar 

  10. Catalan, G. et al. Flexoelectric rotation of polarization in ferroelectric thin films. Nature Mater. 10, 963–967 (2011).

    Article  CAS  Google Scholar 

  11. Lee, D. et al. Giant flexoelectric effect in ferroelectric epitaxial thin films. Phys. Rev. Lett. 107, 057602 (2011).

    Article  CAS  Google Scholar 

  12. Lu, H. et al. Mechanical writing of ferroelectric polarization. Science 336, 59–61 (2012).

    Article  CAS  Google Scholar 

  13. Jia, C.-L. et al. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nature Mater. 6, 64–69 (2007).

    Article  CAS  Google Scholar 

  14. Chu, M.-W. et al. Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nature Mater. 3, 87–90 (2004).

    Article  CAS  Google Scholar 

  15. Nagarajan, V. et al. Misfit dislocations in nanoscale ferroelectric heterostructures. Appl. Phys. Lett. 86, 192910 (2005).

    Article  Google Scholar 

  16. Oh, S. H., Legros, M., Kiener, D. & Dehm, G. In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nature Mater. 8, 95–100 (2009).

    Article  CAS  Google Scholar 

  17. Nelson, C. T. et al. Domain dynamics during ferroelectric switching. Science 334, 968–971 (2011).

    Article  CAS  Google Scholar 

  18. Zeches, R. J. et al. A strain-driven morphotropic phase boundary in BiFeO3 . Science 326, 977–980 (2009).

    Article  CAS  Google Scholar 

  19. Borisevich, A. Y. et al. Atomic-scale evolution of modulated phases at the ferroelectric–antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction. Nature Commun. 3, 775 (2012).

    Article  CAS  Google Scholar 

  20. You, L. et al. Characterization and manipulation of mixed phase nanodomains in highly strained BiFeO3 thin films. ACS Nano 6, 5388–5394 (2012).

    Article  CAS  Google Scholar 

  21. Lu, H. et al. Mechanically-induced resistive switching in ferroelectric tunnel junctions. Nano Lett. 12, 6289–6292 (2012).

    Article  CAS  Google Scholar 

  22. Lee, D., Yang, S. M., Yoon, J.-G. & Noh, T. W. Flexoelectric rectification of charge transport in strain-graded dielectrics. Nano Lett. 12, 6436–6440 (2012).

    Article  CAS  Google Scholar 

  23. Eliseev, E. A., Morozovska, A. N., Svechnikov, G. S., Maksymovych, P. & Kalinin, S. V. Domain wall conduction in multiaxial ferroelectrics. Phys. Rev. B 85, 045312 (2012).

    Article  Google Scholar 

  24. Martin, L. W. et al. Multiferroics and magnetoelectrics: thin films and nanostructures. J. Phys. Condens. Matter 20, 434220 (2008).

    Article  Google Scholar 

  25. Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nature Nanotech. 5, 143–147 (2010).

    Article  CAS  Google Scholar 

  26. Choi, T., Lee, S., Choi, Y. J., Kiryukhin, V. & Cheong, S.-W. Switchable ferroelectric diode and photovoltaic effect in BiFeO3 . Science 324, 63–66 (2009).

    Article  CAS  Google Scholar 

  27. Lee, W.-M. et al. Spatially resolved photodetection in leaky ferroelectric BiFeO3 . Adv. Mater. 24, OP49–OP53 (2012).

    CAS  Google Scholar 

  28. Sung, J. H. et al. Single ferroelectric-domain photovoltaic switch based on lateral BiFeO3 cells. NPG Asia Mater. 5, e38 (2013).

    Article  CAS  Google Scholar 

  29. Bharathi, K. K. et al. Detection of electrically formed photosensitive area in Ca-doped BiFeO3 thin films. Appl. Phys. Lett. 102, 012908 (2013).

    Article  Google Scholar 

  30. Seidel, J. et al. Efficient photovoltaic current generation at ferroelectric domain walls. Phys. Rev. Lett. 107, 126805 (2011).

    Article  Google Scholar 

  31. Béa, H. et al. Evidence for room-temperature multiferroicity in a compound with a giant axial ratio. Phys. Rev. Lett. 102, 217603 (2009).

    Article  Google Scholar 

  32. Ko, K.-T. et al. Concurrent transition of ferroelectric and magnetic ordering near room temperature. Nature Commun. 2, 567 (2011).

    Article  Google Scholar 

  33. Infante, I. C. et al. Multiferroic phase transition near room temperature in BiFeO3 films. Phys. Rev. Lett. 107, 237601 (2011).

    Article  CAS  Google Scholar 

  34. MacDougall, G. J. et al. Antiferromagnetic transitions in tetragonal-like BiFeO3 . Phys. Rev. B 85, 100406 (2012).

    Article  Google Scholar 

  35. Christen, H. M., Nam, J. H., Kim, H. S., Hatt, A. J. & Spaldin, N. A. Stress-induced R-MA-MC-T symmetry changes in BiFeO3 films. Phys. Rev. B 83, 144107 (2011).

    Article  Google Scholar 

  36. Chen, Z. et al. Low-symmetry monoclinic phases and polarization rotation path mediated by epitaxial strain in multiferroic BiFeO3 thin films. Adv. Funct. Mater. 21, 133–138 (2011).

    Article  CAS  Google Scholar 

  37. Kreisel, J. et al. A phase transition close to room temperature in BiFeO3 thin films. J. Phys. Condens. Matter 23, 342202 (2011).

    Article  CAS  Google Scholar 

  38. Diéguez, O., González-Vázquez, O. E., Wojdeł, J. C. & Íñiguez, J. First-principles predictions of low-energy phases of multiferroic BiFeO3 . Phys. Rev. B 83, 094105 (2011).

    Article  Google Scholar 

  39. Chen, L.-Q. Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review. J. Am. Ceram. Soc. 91, 1835–1844 (2008).

    Article  CAS  Google Scholar 

  40. Rossell, M. D. et al. Atomic structure of highly strained BiFeO3 thin films. Phys. Rev. Lett. 108, 047601 (2012).

    Article  CAS  Google Scholar 

  41. Koch, C. T. A flux-preserving non-linear inline holography reconstruction algorithm for partially coherent electrons. Ultramicroscopy 108, 141–150 (2008).

    Article  CAS  Google Scholar 

  42. Chen, P. et al. Optical properties of quasi-tetragonal BiFeO3 thin films. Appl. Phys. Lett. 96, 131907 (2010).

    Article  Google Scholar 

  43. Chichibu, S. F. et al. Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures. Appl. Phys. Lett. 73, 2006 (1998).

    Article  CAS  Google Scholar 

  44. Park, S. R., Kim, C. H., Yu, J., Han, J. H. & Kim, C. Orbital-angular-momentum based origin of Rashba-type surface band splitting. Phys. Rev. Lett. 107, 156803 (2011).

    Article  Google Scholar 

  45. Seidel, J. et al. Domain wall conductivity in La-doped BiFeO3 . Phys. Rev. Lett. 105, 197603 (2010).

    Article  CAS  Google Scholar 

  46. Morozovska, A. N. et al. Defect thermodynamics and kinetics in thin strained ferroelectric films: the interplay of possible mechanisms. Phys. Rev. B 89, 054102 (2014).

    Article  Google Scholar 

  47. Koch, C. T., Ozdöl, V. B. & van Aken, P. A. An efficient, simple, and precise way to map strain with nanometer resolution in semiconductor devices. Appl. Phys. Lett. 96, 091901 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF) of Korea funded by the Korean Government (contract nos. NRF-2011-0016133, 2013S1A2A2035418, 2014R1A2A2A01005979, 2015R1A2A2A01007904 and 2012R1A2A2A01046191). This work was also supported by the Institute for Basic Science (IBS), Korea, under project code IBS-R014-G1. The research was supported by the Pioneer Research Center Program through the NRF of Korea funded by the Ministry of Science, ICT & Future Planning (no. 2012-0009460) and the Global Frontier Hybrid Interface Materials of the NRF of Korea funded by the Korea Government (2013M3A6B1078872). C.-H.Y. acknowledges support from the T.J. Park Science Fellowship. S.-H.O. thanks P. van Aken, head of the Stuttgart Center for Electron Microscopy, for granting us access to the SESAM.

Author information

Authors and Affiliations

Authors

Contributions

K.C. and C.-H.Y. conceived the work. J.H.S., K.C. and M.-H.J. performed and analysed the photocurrent measurements. K.C. measured angle-resolved PFM images. Y.A.S., K.S., S.-Y.C. and S.-H.O. performed TEM and electron holography. K.C. and B.-K.J. carried out phase field simulations and finite element method simulations. E.-S.L. and Y.-H.K. calculated materials parameters using density functional calculations. J.H.L. and T.Y.K. analysed the crystalline structures using X-ray reciprocal space mapping. C.-S.W. and S.J.K. grew epitaxial films. K.C. and C.-H.Y. wrote the manuscript with help from all the other authors.

Corresponding author

Correspondence to Chan-Ho Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4585 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, K., Jang, BK., Sung, J. et al. Enhancement of the anisotropic photocurrent in ferroelectric oxides by strain gradients. Nature Nanotech 10, 972–979 (2015). https://doi.org/10.1038/nnano.2015.191

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.191

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing