Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Solution-processed carbon nanotube thin-film complementary static random access memory

Abstract

Over the past two decades, extensive research on single-walled carbon nanotubes (SWCNTs) has elucidated their many extraordinary properties1,2,3, making them one of the most promising candidates for solution-processable, high-performance integrated circuits4,5. In particular, advances in the enrichment of high-purity semiconducting SWCNTs6,7,8 have enabled recent circuit demonstrations including synchronous digital logic9, flexible electronics10,11,12,13,14 and high-frequency applications15. However, due to the stringent requirements of the transistors used in complementary metal–oxide–semiconductor (CMOS) logic as well as the absence of sufficiently stable and spatially homogeneous SWCNT thin-film transistors16,17,18, the development of large-scale SWCNT CMOS integrated circuits has been limited in both complexity and functionality19,20,21. Here, we demonstrate the stable and uniform electronic performance of complementary p-type and n-type SWCNT thin-film transistors by controlling adsorbed atmospheric dopants and incorporating robust encapsulation layers. Based on these complementary SWCNT thin-film transistors, we simulate, design and fabricate arrays of low-power static random access memory circuits, achieving large-scale integration for the first time based on solution-processed semiconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Complementary SWCNT TFT structures.
Figure 2: Time stability of SWCNT TFT electrical properties.
Figure 3: Large sample statistics of SWCNT TFT electronic properties for |VDS| = 1 V.
Figure 4: SWCNT CMOS SRAM circuit characterization.

Similar content being viewed by others

References

  1. De Volder, M. F. L., Tawfick, S. H., Baughman, R. H. & Hart, A. J. Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013).

    Article  CAS  Google Scholar 

  2. Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J. & Hersam, M. C. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem. Soc. Rev. 42, 2824–2860 (2013).

    Article  CAS  Google Scholar 

  3. Tulevski, G. S. et al. Toward high-performance digital logic technology with carbon nanotubes. ACS Nano 8, 8730–8745 (2014).

    Article  CAS  Google Scholar 

  4. Sangwan, V. K. et al. Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. ACS Nano 6, 7480–7488 (2012).

    Article  CAS  Google Scholar 

  5. Ha, M. et al. Aerosol jet printed, low voltage, electrolyte gated carbon nanotube ring oscillators with sub-5 μs stage delays. Nano Lett. 13, 954–960 (2013).

    Article  CAS  Google Scholar 

  6. Hersam, M. C. Progress towards monodisperse single-walled carbon nanotubes. Nature Nanotech. 3, 387–394 (2008).

    Article  CAS  Google Scholar 

  7. Jin, S. H. et al. Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes. Nature Nanotech. 8, 347–355 (2013).

    Article  CAS  Google Scholar 

  8. Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I. & Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotech. 1, 60–65 (2006).

    Article  CAS  Google Scholar 

  9. Shulaker, M. M. et al. Carbon nanotube computer. Nature 501, 526–530 (2013).

    Article  CAS  Google Scholar 

  10. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    Article  CAS  Google Scholar 

  11. Sun, D.-M. et al. Mouldable all-carbon integrated circuits. Nature Commun. 4, 2302 (2013).

    Article  Google Scholar 

  12. Wang, C. et al. User-interactive electronic skin for instantaneous pressure visualization. Nature Mater. 12, 899–904 (2013).

    Article  CAS  Google Scholar 

  13. Cao, Q. et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454, 495–500 (2008).

    Article  CAS  Google Scholar 

  14. Chen, H., Cao, Y., Zhang, J. & Zhou, C. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nature Commun. 5, 4097 (2014).

    Article  CAS  Google Scholar 

  15. Steiner, M. et al. High-frequency performance of scaled carbon nanotube array field-effect transistors. Appl. Phys. Lett. 101, 053123 (2012).

    Article  Google Scholar 

  16. Franklin, A. D. et al. Carbon nanotube complementary wrap-gate transistors. Nano Lett. 13, 2490–2495 (2013).

    Article  CAS  Google Scholar 

  17. Franklin, A. D. et al. Variability in carbon nanotube transistors: improving device-to-device consistency. ACS Nano 6, 1109–1115 (2012).

    Article  CAS  Google Scholar 

  18. Park, H. et al. High-density integration of carbon nanotubes via chemical self-assembly. Nature Nanotech. 7, 787–791 (2012).

    Article  CAS  Google Scholar 

  19. Wang, H. et al. Tuning the threshold voltage of carbon nanotube transistors by n-type molecular doping for robust and flexible complementary circuits. Proc. Natl Acad. Sci. USA 111, 4776–4781 (2014).

    Article  CAS  Google Scholar 

  20. Kim, B. et al. High-speed, inkjet-printed carbon nanotube/zinc tin oxide hybrid complementary ring oscillators. Nano Lett. 14, 3683–3687 (2014).

    Article  CAS  Google Scholar 

  21. Lee, S. Y. et al. Scalable complementary logic gates with chemically doped semiconducting carbon nanotube transistors. ACS Nano 5, 2369–2375 (2011).

    Article  CAS  Google Scholar 

  22. Zhang, W. et al. A 1 V printed organic DRAM cell based on ion-gel gated transistors with a sub-10nW-per-cell refresh power. Solid-State Circuits Conf. Dig. Tech. Papers 326–328 (2011).

  23. Myny, K. et al. Microprocessor on plastic foil. IEEE J. Solid-State Circuits 47, 284–291 (2012).

    Article  Google Scholar 

  24. Nah, J. et al. III–V complementary metal–oxide–semiconductor electronics on silicon substrates. Nano Lett. 12, 3592–3595 (2012).

    Article  CAS  Google Scholar 

  25. Sekitani, T., Zschieschang, U., Klauk, H. & Someya, T. Flexible organic transistors and circuits with extreme bending stability. Nature Mater. 9, 1015–1022 (2010).

    Article  CAS  Google Scholar 

  26. Derycke, V., Martel, R., Appenzeller, J. & Avouris, P. Controlling doping and carrier injection in carbon nanotube transistors. Appl. Phys. Lett. 80, 2773–2775 (2002).

    Article  CAS  Google Scholar 

  27. Collins, P. G., Bradley, K., Ishigami, M. & Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287, 1801–1804 (2000).

    Article  CAS  Google Scholar 

  28. McClain, D. et al. Impact of oxygen adsorption on a population of mass produced carbon nanotube field effect transistors. Carbon 47, 1493–1500 (2009).

    Article  CAS  Google Scholar 

  29. Geier, M. L. et al. Subnanowatt carbon nanotube complementary logic enabled by threshold voltage control. Nano Lett. 13, 4810–4814 (2013).

    Article  CAS  Google Scholar 

  30. Aguirre, C. M. et al. The role of the oxygen/water redox couple in suppressing electron conduction in field-effect transistors. Adv. Mater. 21, 3087–3091 (2009).

    Article  CAS  Google Scholar 

  31. Ding, L. et al. CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nature Commun. 3, 677 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Naval Research MURI Program (N00014-11-1-0690) and the National Science Foundation (DMR-1006391, DMR-1121262 and CCF-0845605). A National Science Foundation Graduate Research Fellowship (M.L.G.) and a NASA Space Technology Research Fellowship (J.J.M.) are also acknowledged. Device fabrication was performed at the NUFAB cleanroom facility at Northwestern University.

Author information

Authors and Affiliations

Authors

Contributions

M.L.G., W.X., C.H.K. and M.C.H. conceived the experiments. M.L.G. fabricated the device, performed the electrical measurements, carried out the atomic force microscopy characterization and analysed and interpreted the data with input from C.H.K., T.J.M. and M.C.H. J.J.M. designed the TFT photolithography mask and wrote the data analysis program. W.X. and C.H.K. modelled the TFTs and SRAM circuits, and designed the photolithography mask for the SRAM circuits. J.Z. sorted the semiconducting SWCNTs and quantified the purity using UV–vis spectroscopy. The manuscript was written with contributions from all authors, and all authors approved the final version of the manuscript.

Corresponding author

Correspondence to Mark C. Hersam.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1440 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geier, M., McMorrow, J., Xu, W. et al. Solution-processed carbon nanotube thin-film complementary static random access memory. Nature Nanotech 10, 944–948 (2015). https://doi.org/10.1038/nnano.2015.197

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.197

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing