Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tuning emergent magnetism in a Hund's impurity

Abstract

The recently proposed concept of a Hund's metal—a metal in which electron correlations are driven by Hund's rule coupling—can be used to explain the exotic magnetic and electronic behaviour of strongly correlated electron systems of multi-orbital metallic materials. Tuning the abundance of parameters that determine these materials is, however, experimentally challenging. Here, we show that the basic constituent of a Hund's metal—a Hund's impurity—can be realized using a single iron atom adsorbed on a platinum surface, a system that comprises a magnetic moment in the presence of strong charge fluctuations. The magnetic properties can be controlled by using the tip of a scanning tunnelling microscope to change the binding site and degree of hydrogenation of the 3d transition-metal atom. We are able to experimentally explore a regime of four almost degenerate energy scales (Zeeman energy, temperature, Kondo temperature and magnetic anisotropy) and probe the magnetic excitations with the microscope tip. The regime of our Hund's impurity can be tuned from an emergent magnetic moment to a multi-orbital Kondo state, and the system could be used to test predictions of advanced many-body theories for non-Fermi liquids in quantum magnets or unconventional superconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrons in a 3d transition-metal adatom adsorbed to a metallic substrate.
Figure 2: Tuning the magnetism of Fe impurities.
Figure 3: Hund's impurity character of Fe–hydrogen complexes: orbital occupancy and scattering.
Figure 4: Spin excitations of Hund's impurities.
Figure 5: Kondo screening of a Hund's impurity.
Figure 6: Anisotropy and Kondo screening in the six Hund's impurities.

Similar content being viewed by others

References

  1. Paglione, J. & Greene, R. L. High-temperature superconductivity in iron-based materials. Nature Phys. 6, 645–658 (2010).

    Article  CAS  Google Scholar 

  2. Stewart, G. R. Superconductivity in iron compounds. Rev. Mod. Phys. 83, 1589–1652 (2011).

    Article  CAS  Google Scholar 

  3. Wang, F. & Lee, D.-H. The electron-pairing mechanism of iron-based superconductors. Science 332, 200–204 (2011).

    Article  CAS  Google Scholar 

  4. Werner, P. et al. Satellites and large doping and temperature dependence of electronic properties in hole-doped BaFe2As2 . Nature Phys. 8, 331–337 (2012).

    Article  CAS  Google Scholar 

  5. Yin, Z. P., Haule, K. & Kotliar, G. Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. Nature Mater. 10, 932–935 (2011).

    Article  CAS  Google Scholar 

  6. de’ Medici, L., Mravlje, J. & Georges, A. Janus-faced influence of Hund's rule coupling in strongly correlated materials. Phys. Rev. Lett. 107, 256401 (2011).

    Article  Google Scholar 

  7. Mravlje, J. et al. Coherence–incoherence crossover and the mass-renormalization puzzles in Sr2RuO4 . Phys. Rev. Lett. 106, 096401 (2011).

    Article  Google Scholar 

  8. Werner, P., Gull, E., Troyer, M. & Millis, A. J. Spin freezing transition and non-Fermi-liquid self-energy in a three-orbital model. Phys. Rev. Lett. 101, 166405 (2008).

    Article  Google Scholar 

  9. Anderson, P. W. Localized magnetic states in metals. Phys. Rev. 124, 41–53 (1961).

    Article  CAS  Google Scholar 

  10. Kondo, J. Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32, 37–49 (1964).

    Article  CAS  Google Scholar 

  11. Nozières, P. & Blandin, A. Kondo effect in real metals. J. Phys. France 41, 193–211 (1980).

    Article  Google Scholar 

  12. Georges, A., de Medici, L. & Mravlje, J. Strong correlations from Hund's coupling. Annu. Rev. Condens. Matter Phys. 4, 137–178 (2013).

    Article  CAS  Google Scholar 

  13. Haule, K. & Kotliar, G. Coherence–incoherence crossover in the normal state of iron oxypnictides and importance of Hund's rule coupling. New J. Phys. 11, 025021 (2009).

    Article  Google Scholar 

  14. Hund, F. Zur deutung der molekelspektren. I. Z. Phys. 40, 742–764 (1927).

    Article  CAS  Google Scholar 

  15. Hund, F. Zur deutung der molekelspektren. II. Z. Phys. 42, 93–120 (1927).

    Article  CAS  Google Scholar 

  16. Carbone, C. et al. Correlated electrons step by step: itinerant-to-localized transition of Fe impurities in free-electron metal hosts. Phys. Rev. Lett. 104, 117601 (2010).

    Article  CAS  Google Scholar 

  17. Gardonio, S. et al. Excitation spectra of transition-metal atoms on the Ag (100) surface controlled by Hund's exchange. Phys. Rev. Lett. 110, 186404 (2013).

    Article  CAS  Google Scholar 

  18. Delgado, F. & Fernández-Rossier, J. Cotunneling theory of atomic spin inelastic electron tunneling spectroscopy. Phys. Rev. B 84, 045439 (2011).

    Article  Google Scholar 

  19. Gauyacq, J.-P., Lorente, N. & Novaes, F. D. Excitation of local magnetic moments by tunneling electrons. Prog. Surf. Sci. 87, 63–107 (2012).

    Article  CAS  Google Scholar 

  20. Heinrich, A. J., Gupta, J. A., Lutz, C. P. & Eigler, D. M. Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004).

    Article  CAS  Google Scholar 

  21. Hirjibehedin, C. F. et al. Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network. Science 317, 1199–1203 (2007).

    Article  CAS  Google Scholar 

  22. Oberg, J. C. et al. Control of single-spin magnetic anisotropy by exchange coupling. Nature Nanotech. 9, 64–68 (2014).

    Article  CAS  Google Scholar 

  23. Otte, A. F. et al. The role of magnetic anisotropy in the Kondo effect. Nature Phys. 4, 847–850 (2008).

    Article  CAS  Google Scholar 

  24. Huang, L., Wehling, T. O. & Werner, P. Electronic excitation spectra of the five-orbital Anderson impurity model: from the atomic limit to itinerant atomic magnetism. Phys. Rev. B 89, 245104 (2014).

    Article  Google Scholar 

  25. Dubout, Q. et al. Controlling the spin of Co atoms on Pt(111) by hydrogen adsorption. Phys. Rev. Lett. 114, 106807 (2015).

    Article  CAS  Google Scholar 

  26. Madhavan, V., Chen, W., Jamneala, T., Crommie, M. F. & Wingreen, N. S. Tunneling into a single magnetic atom: spectroscopic evidence of the Kondo resonance. Science 280, 567–569 (1998).

    Article  CAS  Google Scholar 

  27. Nagaoka, K., Jamneala, T., Grobis, M. & Crommie, M. F. Temperature dependence of a single Kondo impurity. Phys. Rev. Lett. 88, 077205 (2002).

    Article  CAS  Google Scholar 

  28. Prüser, H. et al. Long-range Kondo signature of a single magnetic impurity. Nature Phys. 7, 203–206 (2011).

    Article  Google Scholar 

  29. Surer, B. et al. Multiorbital Kondo physics of Co in Cu hosts. Phys. Rev. B 85, 085114 (2012).

    Article  Google Scholar 

  30. Fu, Y.-S. et al. Manipulating the Kondo resonance through quantum size effects. Phys. Rev. Lett. 99, 256601 (2007).

    Article  Google Scholar 

  31. Liu, L. et al. Reversible single spin control of individual magnetic molecule by hydrogen atom adsorption. Sci. Rep. 3, 1210 (2013).

    Article  Google Scholar 

  32. Mugarza, A. et al. Spin coupling and relaxation inside molecule–metal contacts. Nature Commun. 2, 490 (2011).

    Article  Google Scholar 

  33. Parks, J. J. et al. Mechanical control of spin states in spin-1 molecules and the underscreened Kondo effect. Science 328, 1370–1373 (2010).

    Article  CAS  Google Scholar 

  34. Tsukahara, N. et al. Evolution of Kondo resonance from a single impurity molecule to the two-dimensional lattice. Phys. Rev. Lett. 106, 187201 (2011).

    Article  Google Scholar 

  35. Zhao, A. et al. Controlling the Kondo effect of an adsorbed magnetic ion through its chemical bonding. Science 309, 1542–1544 (2005).

    Article  CAS  Google Scholar 

  36. Gull, E. et al. Continuous-time Monte Carlo methods for quantum impurity models. Rev. Mod. Phys. 83, 349–404 (2011).

    Article  CAS  Google Scholar 

  37. Hanl, M. et al. Iron impurities in gold and silver: Comparison of transport measurements to numerical renormalization group calculations exploiting non-Abelian symmetries. Phys. Rev. B 88, 075146 (2013).

    Article  Google Scholar 

  38. Khajetoorians, A. A. et al. Spin excitations of individual Fe atoms on Pt(111): impact of the site-dependent giant substrate polarization. Phys. Rev. Lett. 111, 157204 (2013).

    Article  CAS  Google Scholar 

  39. Chilian, B., Khajetoorians, A. A., Wiebe, J. & Wiesendanger, R. Experimental variation and theoretical analysis of the inelastic contribution to atomic spin excitation spectroscopy. Phys. Rev. B 83, 195431 (2011).

    Article  Google Scholar 

  40. Nevidomskyy, A. H. & Coleman, P. Kondo resonance narrowing in d- and f-electron systems. Phys. Rev. Lett. 103, 147205 (2009).

    Article  Google Scholar 

  41. Zhang, Y.-h. et al. Temperature and magnetic field dependence of a Kondo system in the weak coupling regime. Nature Commun. 4, 2110 (2013).

    Article  Google Scholar 

  42. Žitko, R. Kondo resonance lineshape of magnetic adatoms on decoupling layers. Phys. Rev. B 84, 195116 (2011).

    Article  Google Scholar 

  43. Costi, T. A. Kondo effect in a magnetic field and the magnetoresistivity of Kondo alloys. Phys. Rev. Lett. 85, 1504–1507 (2000).

    Article  CAS  Google Scholar 

  44. Wallis, R. H. & Wyatt, A. F. G. Exchange scattering in Ti-doped Al/Al oxide/Ag tunnel junctions. II. Magnetic field. J. Phys. C 7, 1293 (1974).

    Article  CAS  Google Scholar 

  45. De Haas, W. J., de Boer, J. & van dën Berg, G. J. The electrical resistance of gold, copper and lead at low temperatures. Physica 1, 1115–1124 (1934).

    Article  CAS  Google Scholar 

  46. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    Article  CAS  Google Scholar 

  47. Wiebe, J. et al. A 300 mK ultra-high vacuum scanning tunneling microscope for spin-resolved spectroscopy at high energy resolution. Rev. Sci. Instrum. 75, 4871–4879 (2004).

    Article  CAS  Google Scholar 

  48. Karolak, M., Wehling, T. O., Lechermann, F. & Lichtenstein, A. I. General DFT ++ method implemented with projector augmented waves: electronic structure of SrVO3 and the Mott transition in Ca2−xSrxRuO4 . J. Phys. Condens. Matter 23, 085601 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank H. Brune, F. Donati, M. Ternes and the group of S. Lounis for discussions. A.A.K., T.S., M.S., J.W. and R.W. acknowledge funding from SFB668-A1 and GrK1286 of the Deutsche Forschungsgemeinschaft (DFG). A.A.K. also acknowledges project no. KH324/1–1 from the Emmy-Noether-Program of the DFG. R.W. and J.W. acknowledge funding from European Research Council Advanced Grant ‘ASTONISH’. M.V., T.O.W. and A.I.L. acknowledge support from DFG Research Unit FOR1346. M.V. and A.I.L. also acknowledge computer support NIC, Forschungzentrum Jülich, under project HHH14. A.S. and J.K. acknowledge support from project 15-05872J of the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.A.K., M.S. and T.S. performed the experiments. A.A.K., M.S., T.S. and J.W. analysed the experimental data. M.V., T.O.W. and A.I.L. performed the ab initio and QMC calculations. A.S., J.K., M.V. and T.O.W. performed the ED calculations. A.A.K. and J.W. conceived and designed the experiments. A.A.K., M.V., T.O.W. and J.W. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to A. A. Khajetoorians.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khajetoorians, A., Valentyuk, M., Steinbrecher, M. et al. Tuning emergent magnetism in a Hund's impurity. Nature Nanotech 10, 958–964 (2015). https://doi.org/10.1038/nnano.2015.193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.193

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing