Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond

Abstract

Optically detected magnetic resonance using nitrogen–vacancy (NV) colour centres in diamond is a leading modality for nanoscale magnetic field imaging1,2,3, as it provides single electron spin sensitivity4, three-dimensional resolution better than 1 nm (ref. 5) and applicability to a wide range of physical6,7,8,9,10,11,12,13 and biological14,15 samples under ambient conditions. To date, however, NV-diamond magnetic imaging has been performed using ‘real-space’ techniques, which are either limited by optical diffraction to 250 nm resolution16 or require slow, point-by-point scanning for nanoscale resolution, for example, using an atomic force microscope17, magnetic tip5, or super-resolution optical imaging18,19. Here, we introduce an alternative technique of Fourier magnetic imaging using NV-diamond. In analogy with conventional magnetic resonance imaging (MRI), we employ pulsed magnetic field gradients to phase-encode spatial information on NV electronic spins in wavenumber or ‘k-space’20 followed by a fast Fourier transform to yield real-space images with nanoscale resolution, wide field of view and compressed sensing speed-up.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fourier magnetic imaging experiment.
Figure 2: Fourier imaging of NV centres with nanoscale resolution.
Figure 3: Fourier magnetic gradient sensing below the optical diffraction limit.
Figure 4: Fourier magnetic imaging with wide FOV and nanometre-scale resolution.
Figure 5: Compressed sensing speed-up of NV Fourier magnetic imaging.

Similar content being viewed by others

References

  1. Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008).

    Article  CAS  Google Scholar 

  2. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    Article  CAS  Google Scholar 

  3. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  CAS  Google Scholar 

  4. Grinolds, M. S. et al. Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nature Phys. 9, 215–219 (2013).

    Article  CAS  Google Scholar 

  5. Grinolds, M. S. et al. Sub-nanometer resolution in three-dimensional magnetic resonance imaging of individual dark spins. Nature Nanotech. 9, 279–284 (2014).

    Article  CAS  Google Scholar 

  6. Rondin, L. et al. Stray-field imaging of magnetic vortices with a single diamond spin. Nature Commun. 4, 2279 (2013).

    Article  CAS  Google Scholar 

  7. Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013).

    Article  CAS  Google Scholar 

  8. Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science 339, 561–563 (2013).

    Article  CAS  Google Scholar 

  9. Sushkov, A. O. et al. Magnetic resonance detection of individual proton spins using quantum reporters. Phys. Rev. Lett. 113, 197601 (2014).

    Article  CAS  Google Scholar 

  10. Fu, R. R. et al. Solar nebula magnetic fields recorded in the Semarkona meteorite. Science 346, 1089–1092 (2014).

    Article  CAS  Google Scholar 

  11. Sushkov, A. O. et al. All-optical sensing of a single-molecule electron spin. Nano Lett. 14, 6443–6448 (2014).

    Article  CAS  Google Scholar 

  12. Luan, L. et al. Decoherence imaging of spin ensembles using a scanning single-electron spin in diamond. Sci. Rep. 5, 8119 (2015).

    Article  CAS  Google Scholar 

  13. van der Sar, T. et al. Nanometre-scale probing of spin waves using single-electron spins. Nature Commun. 6, 7886 (2015).

    Article  CAS  Google Scholar 

  14. Le Sage, D. et al. Optical magnetic imaging of living cells. Nature 496, 486–489 (2013).

    Article  CAS  Google Scholar 

  15. Rahn-Lee, L. et al. A genetic strategy for probing the functional diversity of magnetosome formation. PLoS Genet. 11, e1004811 (2015).

    Article  Google Scholar 

  16. Pham, L. M. et al. Magnetic field imaging with nitrogen-vacancy ensembles. New J. Phys. 13, 045021 (2011).

    Article  Google Scholar 

  17. Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nature Nanotech. 7, 320–324 (2012).

    Article  CAS  Google Scholar 

  18. Maurer, P. C. et al. Far-field optical imaging and manipulation of individual spins with nanoscale resolution. Nature Phys. 6, 912–918 (2010).

    Article  CAS  Google Scholar 

  19. Wildanger, D. et al. Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization. Adv. Mater. 24, OP309–OP313 (2012).

    Article  CAS  Google Scholar 

  20. Sodickson, A. & Cory, D. G. A generalized k-space formalism for treating the spatial aspects of a variety of NMR experiments. Prog. Nucl. Magn. Reson. Spectrosc. 33, 77–108 (1998).

    Article  CAS  Google Scholar 

  21. Ernst, R. R. & Anderson, W. A. Application of Fourier transform spectroscopy to magnetic resonance. Rev. Sci. Instrum. 37, 93–102 (1966).

    Article  CAS  Google Scholar 

  22. Nichol, J. M. et al. Nanoscale Fourier-transform magnetic resonance imaging. Phys. Rev. X 3, 031016 (2013).

    Google Scholar 

  23. Candès, E., Romberg, J. & Tao, T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006).

    Article  Google Scholar 

  24. Lustig, M., Donoho, D. L., Santos, J. M. & Pauly, J. M. Compressed sensing MRI. Signal Process. Mag. IEEE 25, 72–82 (2008).

    Article  Google Scholar 

  25. De Lange, G., Wang, Z. H., Ristè, D., Dobrovitski, V. V. & Hanson, R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010).

    Article  CAS  Google Scholar 

  26. Pham, L. M. et al. Enhanced solid-state multispin metrology using dynamical decoupling. Phys. Rev. B 86, 045214 (2012).

    Article  Google Scholar 

  27. Glenn, D. R. et al. Single-cell magnetic imaging using a quantum diamond microscope. Nature Methods 12, 736–738 (2015).

    Article  CAS  Google Scholar 

  28. DeVience, S. J. et al. Nanoscale NMR spectroscopy and imaging of multiple nuclear species. Nature Nanotech. 10, 129–134 (2015).

    Article  CAS  Google Scholar 

  29. Pham, L. M. et al. Enhanced metrology using preferential orientation of nitrogen-vacancy centers in diamond. Phys. Rev. B 86, 121202(R) (2012).

    Article  Google Scholar 

  30. Le Sage, D. et al. Efficient photon detection from color centers in a diamond optical waveguide. Phys. Rev. B 85, 121202(R) (2012).

    Article  Google Scholar 

  31. Bar-Gill, N. et al. Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems. Nature Commun. 3, 858 (2012).

    Article  CAS  Google Scholar 

  32. Bar-Gill, N., Pham, L. M., Jarmola, A., Budker, D. & Walsworth, R. L. Solid-state electronic spin coherence time approaching one second. Nature Commun. 4, 1743 (2013).

    Article  CAS  Google Scholar 

  33. Dolde, F. et al. Electric-field sensing using single diamond spins. Nature Phys. 7, 459–463 (2011).

    Article  CAS  Google Scholar 

  34. Kucsko, G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013).

    Article  CAS  Google Scholar 

  35. Koehl, W. F., Buckley, B. B., Heremans, F. J., Calusine, G. & Awschalom, D. D. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).

    Article  CAS  Google Scholar 

  36. Stanwix, P. L. et al. Coherence of nitrogen-vacancy electronic spin ensembles in diamond. Phys. Rev. B 82, 201201(R) (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation, and the Multidisciplinary University Research Initiative (MURI) QuISM and Defense Advanced Research Projects Agency (DARPA) QuASAR programmes. The authors acknowledge the provision of diamond samples by Element 6 and helpful technical discussions with M. Sarracanie, M. Rosen, D. Phillips, A. Glenday and B. Haussmann.

Author information

Authors and Affiliations

Authors

Contributions

K.A., C.B. and H.Z. contributed equally to this work. R.L.W. conceived the idea of NV Fourier magnetic imaging and supervised the project. K.A., C.B. and H.Z. developed measurement protocols, hardware and software for NV Fourier magnetic imaging, performed the measurements and analysed the data. C.B. and N.B.-G. developed the NV-diamond confocal microscope used in the study. N.B.-G. also aided the development of data acquisition software. S.J.D. and A.Y. advised on Fourier imaging techniques and applications. P.C. advised on compressed sensing techniques and applications. All authors discussed the results and participated in writing the manuscript.

Corresponding author

Correspondence to R. L. Walsworth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 987 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arai, K., Belthangady, C., Zhang, H. et al. Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotech 10, 859–864 (2015). https://doi.org/10.1038/nnano.2015.171

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing