Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

All-electric all-semiconductor spin field-effect transistors

Abstract

The spin field-effect transistor envisioned by Datta and Das1 opens a gateway to spin information processing2,3. Although the coherent manipulation of electron spins in semiconductors is now possible4,5,6,7,8, the realization of a functional spin field-effect transistor for information processing has yet to be achieved, owing to several fundamental challenges such as the low spin-injection efficiency due to resistance mismatch9, spin relaxation and the spread of spin precession angles. Alternative spin transistor designs have therefore been proposed10,11, but these differ from the field-effect transistor concept and require the use of optical or magnetic elements, which pose difficulties for incorporation into integrated circuits. Here, we present an all-electric and all-semiconductor spin field-effect transistor in which these obstacles are overcome by using two quantum point contacts as spin injectors and detectors. Distinct engineering architectures of spin–orbit coupling are exploited for the quantum point contacts and the central semiconductor channel to achieve complete control of the electron spins (spin injection, manipulation and detection) in a purely electrical manner. Such a device is compatible with large-scale integration and holds promise for future spintronic devices for information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: All-electric all-semiconductor spin FET.
Figure 2: Oscillating on/off switch of the spin FET.
Figure 3: Influence of QPC conductance and temperature on the operation of spin FETs.
Figure 4: Simultaneous electrical and magnetic control of spin precession.

Similar content being viewed by others

References

  1. Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  CAS  Google Scholar 

  2. Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  CAS  Google Scholar 

  3. Awschalom, D. D. & Flatté, M. E. Challenges for semiconductor spintronics. Nature Phys. 3, 153–159 (2007).

    Article  CAS  Google Scholar 

  4. Crooker, S. A. et al. Imaging spin transport in lateral ferromagnet/semiconductor structures. Science 309, 2191–2195 (2005).

    Article  CAS  Google Scholar 

  5. Appelbaum, I., Huang, B. & Monsma, D. J. Electronic measurement and control of spin transport in silicon. Nature 447, 295–298 (2007).

    Article  CAS  Google Scholar 

  6. Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet–semiconductor devices. Nature Phys. 3, 197–202 (2007).

    Article  CAS  Google Scholar 

  7. Koo, H. C. et al. Control of spin precession in a spin-injected field effect transistor. Science 325, 1515–1518 (2009).

    Article  CAS  Google Scholar 

  8. Kum, H. et al. Room temperature single GaN nanowire spin valves with FeCo/MgO tunnel contacts. Appl. Phys. Lett. 100, 182407 (2012).

    Article  Google Scholar 

  9. Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T. & van Wees, B. J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790 (2000).

    Article  CAS  Google Scholar 

  10. Wunderlich, J. et al. Spin Hall effect transistor. Science 330, 1801–1804 (2010).

    Article  CAS  Google Scholar 

  11. Betthausen, C. et al. Spin-transistor action via tunable Landau–Zener transitions. Science 337, 324–327 (2012).

    Article  CAS  Google Scholar 

  12. Rashba, E. I. Properties of semiconductors with an extremum loop I. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State 2, 1109–1122 (1960).

    Google Scholar 

  13. Bychkov, Y. A. & Rashba, E. I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C 17, 6039–6045 (1984).

    Article  Google Scholar 

  14. Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin–orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).

    Article  CAS  Google Scholar 

  15. Koga, T., Nitta, J., Akazaki, T. & Takayanagi, H. Rashba spin–orbit coupling probed by the weak antilocalization analysis in InAlAs/InGaAs/InAlAs quantum wells as a function of quantum well asymmetry. Phys. Rev. Lett. 89, 046801 (2002).

    Article  Google Scholar 

  16. Thomas, K. J. et al. Possible spin polarization in a one-dimensional electron gas. Phys. Rev. Lett. 77, 135–138 (1996).

    Article  CAS  Google Scholar 

  17. Bauer, F. et al. Microscopic origin of the ‘0.7-anomaly’ in quantum point contacts. Nature 501, 73–78 (2013).

    Article  CAS  Google Scholar 

  18. Iqbal, M. J. et al. Odd and even Kondo effects from emergent localization in quantum point contacts. Nature 501, 79–83 (2013).

    Article  CAS  Google Scholar 

  19. Debray, P. et al. All-electric quantum point contact spin-polarizer. Nature Nanotech. 4, 759–764 (2009).

    Article  CAS  Google Scholar 

  20. Wan, J., Cahay, M., Debray, P. & Newrock, R. Possible origin of the 0.5 plateau in the ballistic conductance of quantum point contacts. Phys. Rev. B 80, 155440 (2009).

    Article  Google Scholar 

  21. Quay, C. H. L. et al. Observation of a one-dimensional spin–orbit gap in a quantum wire. Nature Phys. 6, 336–339 (2010).

    Article  CAS  Google Scholar 

  22. Nowak, M. P. & Szafran, B. Spin current source based on a quantum point contact with local spin–orbit interaction. Appl. Phys. Lett. 103, 202404 (2013).

    Article  Google Scholar 

  23. Chen, T. M., Graham, A. C., Pepper, M., Farrer, I. & Ritchie, D. A. Bias-controlled spin polarization in quantum wires. Appl. Phys. Lett. 93, 032102 (2008).

    Article  Google Scholar 

  24. Chen, T. M., Pepper, M., Farrer, I., Jones, G. A. C. & Ritchie, D. A. All-electrical injection and detection of a spin-polarized current using 1D conductors. Phys. Rev. Lett. 109, 177202 (2012).

    Article  Google Scholar 

  25. Moroz, A. V. & Barnes, C. H. W. Effect of the spin–orbit interaction on the band structure and conductance of quasi-one-dimensional systems. Phys. Rev. B 60, 14272 (1999).

    Article  CAS  Google Scholar 

  26. D'yakonov, M. I. & Perel', V. I. On spin orientation of electrons in interband absorption of light in semiconductors. Zh. Eksp. Teor. Fiz. 60, 1954–1965 (1971). [Sov. Phys. JETP 33, 1053 (1971)].

    CAS  Google Scholar 

  27. D'yakonov, M. I. & Kachorovskii, V. Y. Spin relaxation of two-dimensional electrons in noncentrosymetric semiconductors. Sov. Phys. Semicond. 20, 110–112 (1986).

    Google Scholar 

  28. Elliott, R. J. Theory of the effect of spin–orbit coupling on magnetic resonance in some semiconductors. Phys. Rev. 96, 266–279 (1954).

    Article  CAS  Google Scholar 

  29. Serra, L., Sánchez, D. & López, R. Rashba interaction in quantum wires with in-plane magnetic fields. Phys. Rev. B 72, 235309 (2005).

    Article  Google Scholar 

  30. Simmonds, P. J. et al. Quantum transport in In0.75Ga0.25As quantum wires. Appl. Phys. Lett. 92, 152108 (2008).

    Article  Google Scholar 

  31. Sugahara, S. & Nitta, J. Spin-transistor electronics: an overview and outlook. Proc. IEEE 98, 2124–2154 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank C-W. Chang, C-C. Cheng, M. Fletcher, S.N. Holmes, C-T. Liang, S-T. Lo and J.R. Petta for discussions and/or technical assistance regarding device fabrication and measurements. This work was supported by the Ministry of Science and Technology (Taiwan), the Headquarters of University Advancement at the National Cheng Kung University, and the Engineering and Physical Sciences Research Council (UK).

Author information

Authors and Affiliations

Authors

Contributions

P.C. and S-C.H. performed the measurements and analysed the data, with participation from T-M.C. L.W.S. fabricated the devices with contributions from F.S., M.P. and T-M.C. I.F., H.E.B. and D.A.R. provided wafers. J.P.G. and G.A.C.J. performed electron-beam lithography. C.H.C. and J.C.F. contributed some measurements. T-M.C. wrote the paper with input from S-C.H., L.W.S., F.S. and M.P. T-M.C. designed and coordinated the project.

Corresponding author

Correspondence to Tse-Ming Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 384 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuang, P., Ho, SC., Smith, L. et al. All-electric all-semiconductor spin field-effect transistors. Nature Nanotech 10, 35–39 (2015). https://doi.org/10.1038/nnano.2014.296

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.296

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing