Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Partitioning of on-demand electron pairs

Abstract

The on-demand generation and separation of entangled photon pairs are key components of quantum information processing in quantum optics1,2,3. In an electronic analogue, the decomposition of electron pairs represents an essential building block for using the quantum state of ballistic electrons in electron quantum optics4,5,6,7. The scattering of electrons has been used to probe the particle statistics of stochastic sources in Hanbury Brown and Twiss experiments8,9 and the recent advent of on-demand sources further offers the possibility to achieve indistinguishability between multiple sources in Hong–Ou–Mandel experiments10,11,12,13,14,15. Cooper pairs impinging stochastically at a mesoscopic beamsplitter have been successfully partitioned, as verified by measuring the coincidence of arrival16,17,18,19,20,21. Here, we demonstrate the splitting of electron pairs generated on demand. Coincidence correlation measurements allow the reconstruction of the full counting statistics, revealing regimes of statistically independent, distinguishable or correlated partitioning, and have been envisioned as a source of information on the quantum state of the electron pair22,23,24,25,26. The high pair-splitting fidelity opens a path to future on-demand generation of spin-entangled electron pairs from a suitably prepared two-electron quantum-dot ground state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measurement set-up.
Figure 2: Partitioning noise of an on-demand electron source.
Figure 3: Partitioning of on-demand electron pairs.
Figure 4: Regimes of binomial distribution.

Similar content being viewed by others

References

  1. Kim, J., Benson, O., Kan, H. & Yamamoto, Y. A single-photon turnstile device. Nature 397, 500–503 (1999).

    Article  CAS  Google Scholar 

  2. Stevenson, R. M. et al. A semiconductor source of triggered entangled photon pairs. Nature 439, 179–182 (2006).

    Article  CAS  Google Scholar 

  3. Lang, C. et al. Correlations, indistinguishability and entanglement in Hong–Ou–Mandel experiments at microwave frequencies. Nature Phys. 9, 345–348 (2013).

    Article  CAS  Google Scholar 

  4. Yamamoto, M. et al. Electrical control of a solid-state flying qubit. Nature Nanotech. 7, 247–251 (2012).

    Article  CAS  Google Scholar 

  5. Ji, Y. et al. An electronic Mach–Zehnder interferometer. Nature 422, 415–418 (2003).

    Article  CAS  Google Scholar 

  6. Neder, I. et al. Interference between two indistinguishable electrons from independent sources. Nature 448, 333–337 (2007).

    Article  CAS  Google Scholar 

  7. Altimiras, C. et al. Non-equilibrium edge-channel spectroscopy in the integer quantum Hall regime. Nature Phys. 6, 34–39 (2009).

    Article  Google Scholar 

  8. Henny, M. et al. The fermionic Hanbury Brown and Twiss experiment. Science 284, 296–298 (1999).

    Article  CAS  Google Scholar 

  9. Oliver, W. D., Kim, J., Liu, R. C. & Yamamoto, Y. Hanbury Brown and Twiss-type experiment with electrons. Science 284, 299–301 (1999).

    Article  CAS  Google Scholar 

  10. Fève, G. et al. An on-demand coherent single-electron source. Science 316, 1169–1172 (2007).

    Article  Google Scholar 

  11. Bocquillon, E. et al. Electron quantum optics: partitioning electrons one by one. Phys. Rev. Lett. 108, 196803 (2012).

    Article  CAS  Google Scholar 

  12. Fletcher, J. D. et al. Clock-controlled emission of single-electron wave packets in a solid-state circuit. Phys. Rev. Lett. 111, 216807 (2013).

    Article  CAS  Google Scholar 

  13. Liu, R. C., Odom, B., Yamamoto, Y. & Tarucha, S. Quantum interference in electron collision. Nature 391, 263–265 (1998).

    Article  CAS  Google Scholar 

  14. Bocquillon, E. et al. Coherence and indistinguishability of single electrons emitted by independent sources. Science 339, 1054–1057 (2013).

    Article  CAS  Google Scholar 

  15. Dubois, J. et al. Minimal-excitation states for electron quantum optics using levitons. Nature 502, 659–663 (2013).

    Article  CAS  Google Scholar 

  16. Wei, J. & Chandrasekhar, V. Positive noise cross-correlation in hybrid superconducting and normal-metal three-terminal devices. Nature Phys. 6, 494–498 (2010).

    Article  CAS  Google Scholar 

  17. Herrmann, L. G. et al. Carbon nanotubes as Cooper-pair beam splitters. Phys. Rev. Lett. 104, 026801 (2010).

    Article  CAS  Google Scholar 

  18. Hofstetter, L., Csonka, S., Nygard, J. & Schonenberger, C. Cooper pair splitter realized in a two-quantum-dot Y-junction. Nature 461, 960–963 (2009).

    Article  CAS  Google Scholar 

  19. Hofstetter, L. et al. Finite-bias Cooper pair splitting. Phys. Rev. Lett. 107, 136801 (2011).

    Article  CAS  Google Scholar 

  20. Das, A. et al. High-efficiency Cooper pair splitting demonstrated by two-particle conductance resonance and positive noise cross-correlation. Nature Commun. 3, 1165 (2012).

    Article  Google Scholar 

  21. Schindele, J., Baumgartner, A. & Schönenberger, C. Near-unity Cooper pair splitting efficiency. Phys. Rev. Lett. 109, 157002 (2012).

    Article  CAS  Google Scholar 

  22. Burkard, G., Loss, D. & Sukhorukov, E. V. Noise of entangled electrons: bunching and antibunching. Phys. Rev. B 61, R16303 (2000).

    Article  CAS  Google Scholar 

  23. Samuelsson, P. & Büttiker, M. Quantum state tomography with quantum shot noise. Phys. Rev. B 73, 041305 (2006).

    Article  Google Scholar 

  24. Hassler, F., Lesovik, G. B. & Blatter, G. Effects of exchange symmetry on full counting statistics. Phys. Rev. Lett. 99, 076804 (2007).

    Article  CAS  Google Scholar 

  25. Hassler, F. et al. Wave-packet formalism of full counting statistics. Phys. Rev. B 78, 165330 (2008).

    Article  Google Scholar 

  26. Wahl, C., Rech, J., Jonckheere, T. & Martin, T. Interactions and charge fractionalization in an electronic Hong–Ou–Mandel interferometer. Phys. Rev. Lett. 112, 046802 (2014).

    Article  Google Scholar 

  27. Blumenthal, M. D. et al. Gigahertz quantized charge pumping. Nature Phys. 3, 343–347 (2007).

    Article  CAS  Google Scholar 

  28. Kaestner, B. et al. Single-parameter nonadiabatic quantized charge pumping. Phys. Rev. B 77, 153301 (2008).

    Article  Google Scholar 

  29. Giblin, S. P. et al. Towards a quantum representation of the ampere using single electron pumps. Nature Commun. 3, 930 (2012).

    Article  CAS  Google Scholar 

  30. Leicht, C. et al. Generation of energy selective excitations in quantum Hall edge states. Semicond. Sci. Technol. 26, 055010 (2011).

    Article  Google Scholar 

  31. Maire, N. et al. Noise measurement of a quantized charge pump. Appl. Phys. Lett. 92, 082112 (2008).

    Article  Google Scholar 

  32. Taubert, D. et al. Relaxation of hot electrons in a degenerate two-dimensional electron system: transition to one-dimensional scattering. Phys. Rev. B 83, 235404 (2011).

    Article  Google Scholar 

  33. Sivan, U., Heiblum, M. & Umbach, C. P. Hot ballistic transport and phonon emission in a two-dimensional electron gas. Phys. Rev. Lett. 63, 992–995 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank H. Marx, Th. Weimann and P. Mirovsky for the fabrication of the wafer material and the device. The authors (except V.K.) acknowledge financial support by the German Research Foundation, the Niedersachsen Institutes of Technology and (except T.M., R.J.H., and V.K.) the European Metrology Research Programme (EMRP) within the Joint Research Project ‘Quantum Ampere’ (JRP SIB07). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. V.K. has been supported by the Latvian Science Council.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived the research. N.U., T.W. and L.F. carried out the experiments. N.U., F.H. and V.K. analysed the data and wrote the manuscript. V.K. developed the modelling theory and wrote Supplementary Sections A and B. K.P. provided the heterostructure. F.H., H.W.S. and R.J.H. supervised the research. All authors discussed the results and contributed to editing the manuscript.

Corresponding author

Correspondence to Niels Ubbelohde.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 626 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ubbelohde, N., Hohls, F., Kashcheyevs, V. et al. Partitioning of on-demand electron pairs. Nature Nanotech 10, 46–49 (2015). https://doi.org/10.1038/nnano.2014.275

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.275

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing