Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnonic charge pumping via spin–orbit coupling

Abstract

The interplay between spin, charge and orbital degrees of freedom has led to the development of spintronic devices such as spin–torque oscillators and spin-transfer torque magnetic random-access memories. In this development, spin pumping represents a convenient way to electrically detect magnetization dynamics1,2,3,4,5,6. The effect originates from direct conversion of low-energy quantized spin waves in the magnet, known as magnons, into a flow of spins from the precessing magnet to adjacent leads. In this case, a secondary spin–charge conversion element, such as heavy metals with large spin Hall angle4,5,6 or multilayer layouts7, is required to convert the spin current into a charge signal. Here, we report the experimental observation of charge pumping in which a precessing ferromagnet pumps a charge current, demonstrating direct conversion of magnons into high-frequency currents via the relativistic spin–orbit interaction. The generated electric current, unlike spin currents generated by spin-pumping, can be directly detected without the need of any additional spin–charge conversion mechanism. The charge-pumping phenomenon is generic and gives a deeper understanding of its reciprocal effect, the spin orbit torque, which is currently attracting interest for their potential in manipulating magnetic information.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spin–orbit torque and charge pumping.
Figure 2: Charge-pumping experiment.
Figure 3: Theoretical modelling of measured angular dependence of charge pumping.

Similar content being viewed by others

References

  1. Mizukami, S., Ando, Y. & Miyazaki, T. The study on ferromagnetic resonance linewidth for NM/80NiFe/NM (NM = Cu, Ta, Pd and Pt) films. Jpn. J. Appl. Phys. 40, 580–585 (2001).

    Article  CAS  Google Scholar 

  2. Heinrich, B. et al. Dynamic exchange coupling in magnetic bilayers. Phys. Rev. Lett. 90, 187601 (2003).

    Article  Google Scholar 

  3. Costache, M. V., Sladkov, M., Watts, S. M., van der Wal, C. H. & van Wees, B. J. Electrical detection of spin pumping due to the precessing magnetization of a single ferromagnet. Phys. Rev. Lett. 97, 216603 (2006).

    Article  CAS  Google Scholar 

  4. Mosendz, O. et al. Quantifying spin Hall angles from spin pumping: experiments and theory. Phys. Rev. Lett. 104, 046601 (2010).

    Article  CAS  Google Scholar 

  5. Kajiwara, Y. et al. Transmission of electrical signals by spin–wave interconversion in a magnetic insulator. Nature 464, 262–267 (2010).

    Article  CAS  Google Scholar 

  6. Sandweg, C. W. et al. Spin pumping by parametrically excited exchange magnons. Phys. Rev. Lett. 106, 216601 (2011).

    Article  CAS  Google Scholar 

  7. Sánchez, J. C. R. et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nature Commun. 4, 2944 (2013).

    Article  Google Scholar 

  8. Tserkovnyak, Y., Brataas, A., Bauer, G. E. W. & Halperin, B. I. Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev. Mod. Phys. 77, 1375–1421 (2005).

    Article  CAS  Google Scholar 

  9. Ralph, D. C. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

    Article  CAS  Google Scholar 

  10. Bernevig, B. A. & Vafek, O. Piezo-magnetoelectric effects in p-doped semiconductors. Phys. Rev. B 72, 033203 (2005).

    Article  Google Scholar 

  11. Manchon, A. & Zhang, S. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys. Rev. B 78, 212405 (2008).

    Article  Google Scholar 

  12. Manchon, A. & Zhang, S. Theory of spin torque due to spin–orbit coupling. Phys. Rev. B 79, 094422 (2009).

    Article  Google Scholar 

  13. Garate, I. & MacDonald, A. H. Influence of a transport current on magnetic anisotropy in gyrotropic ferromagnets. Phys. Rev. B 80, 134403 (2009).

    Article  Google Scholar 

  14. Hals, K. M. D., Brataas, A. & Tserkovnyak, Y. Scattering theory of charge-current-induced magnetization dynamics. Europhys. Lett. 90, 47002 (2010).

    Article  Google Scholar 

  15. Pesin, D. A. & MacDonald, A. H. Quantum kinetic theory of current-induced torques in Rashba ferromagnets. Phys. Rev. B 86, 014416 (2012).

    Article  Google Scholar 

  16. Wang, X. H. & Manchon, A. Diffusive spin dynamics in ferromagnetic thin films with a Rashba interaction. Phys. Rev. Lett. 108, 117201 (2012).

    Article  Google Scholar 

  17. Hals, K. M. D. & Brataas, A. Phenomenology of current-induced spin–orbit torques. Phys. Rev. B 88, 085423 (2013).

    Article  Google Scholar 

  18. Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nature Phys. 5, 656–659 (2009).

    Article  CAS  Google Scholar 

  19. Endo, M., Matsukura, F. & Ohno, H. Current induced effective magnetic field and magnetization reversal in uniaxial anisotropy (Ga,Mn)As. Appl. Phys. Lett. 97, 222501 (2010).

    Article  Google Scholar 

  20. Fang. D. et al. Spin–orbit-driven ferromagnetic resonance. Nature Nanotech. 6, 413–417 (2011).

    Article  CAS  Google Scholar 

  21. Kurebayashi, H. et al. An antidamping spin–orbit torque originating from the Berry curvature. Nature Nanotech. 9, 211–217 (2014).

    Article  CAS  Google Scholar 

  22. Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nature Mater. 9, 230–234 (2010).

    Article  Google Scholar 

  23. Miron, I. M. et al. Fast current-induced domain-wall motion controlled by the Rashba effect. Nature Mater. 10, 419–423 (2011).

    Article  CAS  Google Scholar 

  24. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  CAS  Google Scholar 

  25. Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nature Nanotech. 8, 587–593 (2013).

    Article  CAS  Google Scholar 

  26. Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta |CoFeB| MgO. Nature Mater. 12, 240–245 (2013).

    Article  CAS  Google Scholar 

  27. Fan, X. et al. Observation of the nonlocal spin-orbital effective field. Nature Commun. 4, 1799 (2013).

    Article  Google Scholar 

  28. Onsager, L. Reciprocal relations in irreversible processes. Phys. Rev. 37, 405 (1931).

    Article  CAS  Google Scholar 

  29. Tatara, G., Nakabayashi, N. & Lee, K. J. Spin motive force induced by Rashba interaction in the strong sd coupling regime. Phys. Rev. B 87, 054403 (2013).

    Article  Google Scholar 

  30. Jungwirth, T., Sinova, J., Masek, J., Kucera, J. & MacDonald, A. H. Theory of ferromagnetic (III,Mn)V semiconductors. Rev. Mod. Phys. 78, 809 (2006).

    Article  CAS  Google Scholar 

  31. Liu, L. Q., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin–torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    Article  Google Scholar 

  32. Liu, X. Y. & Furdyna, J. K. Ferromagnetic resonance in Ga1–xMnxAs dilute magnetic semiconductors. J. Phys. Condens. Matter 18, R245–R279 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.F. acknowledges support from a Hitachi Research Fellowship and C.C. from a Junior Research Fellowship at Gonville and Caius College. V.N. acknowledges MSMT grant no. LM2011026.

Author information

Authors and Affiliations

Authors

Contributions

K.H. and A.B. developed the theory and suggested the experiment. C.C. and A.J.F. developed the experimental technique and performed the experimental work. V.N. grew the materials. A.I. performed the nanofabrication. C.C., K.H., A.B. and A.F. wrote the manuscript. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Arne Brataas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 996 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciccarelli, C., Hals, K., Irvine, A. et al. Magnonic charge pumping via spin–orbit coupling. Nature Nanotech 10, 50–54 (2015). https://doi.org/10.1038/nnano.2014.252

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.252

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing