Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Epitaxial growth of silicon nanowires using an aluminium catalyst

Abstract

Silicon nanowires have been identified as important components for future electronic and sensor nanodevices1. So far gold has dominated as the catalyst for growing Si nanowires via the vapour–liquid–solid (VLS) mechanism2,3,4,5. Unfortunately, gold traps electrons and holes in Si and poses a serious contamination problem for Si complementary metal oxide semiconductor (CMOS) processing. Although there are some reports on the use of non-gold catalysts6,7,8,9 for Si nanowire growth, either the growth requires high temperatures and/or the catalysts are not compatible with CMOS requirements. From a technological standpoint, a much more attractive catalyst material would be aluminium, as it is a standard metal in Si process lines. Here we report for the first time the epitaxial growth of Al-catalysed Si nanowires and suggest that growth proceeds via a vapour–solid–solid (VSS) rather than a VLS mechanism. It is also found that the tapering of the nanowires can be strongly reduced by lowering the growth temperature.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the Al-rich region of the Al–Si binary phase diagram (data from ref. 16).
Figure 2: Characterization of the epitaxially grown Si nanowires.
Figure 3: Effect of growth temperature on the tapering of nanowires.
Figure 4: Temperature dependence of tapering of the Si nanowires.

Similar content being viewed by others

References

  1. Cui, Y. & Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853 (2001).

    Article  CAS  Google Scholar 

  2. Schmidt, V., Senz, S. & Gösele, U. Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett. 5, 931–935 (2005).

    Article  CAS  Google Scholar 

  3. Gao, D., He, R. H., Carraro, C., Howe, R. T., Yang, P. D. & Maboudian, R. Selective growth of Si nanowire arrays via galvanic displacement processes in water-in-oil microemulsions. J. Am. Chem. Soc. 127, 4574–4575 (2005).

    Article  CAS  Google Scholar 

  4. Hannon, J. B., Kodambaka, S., Ross, F. M. & Tromp, R. M. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69–71 (2006).

    Article  CAS  Google Scholar 

  5. Wu, Y., Cui, Y., Huynh, L., Barrelet, C. J., Bell, D. C. & Lieber, C. M. Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4, 433–436 (2004).

    Article  CAS  Google Scholar 

  6. Morales, A. M. & Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208–211 (1998).

    Article  CAS  Google Scholar 

  7. Weyher, J. Some notes on the growth kinetics and morphology of VLS silicon crystals grown with platinum and gold as liquid-forming agents. J. Cryst. Growth 43, 235–244 (1978).

    Article  CAS  Google Scholar 

  8. Nebol'sin, V. A. & Shchetinin, A. A. Role of surface energy in the vapor–liquid–solid growth of silicon. Inorg. Mater. 39, 899–903 (2003).

    Article  Google Scholar 

  9. Givargizov, E. I. Highly Anistropic Crystals 104–105 (Terra Scientific Publishing Company, Tokyo, Japan, 1987).

    Book  Google Scholar 

  10. Wagner, R. S. & Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

    Article  CAS  Google Scholar 

  11. Kamins, T. I. et al. Chemical vapor deposition of Si nanowires nucleated by TiSi2 islands on Si. Appl. Phys. Lett. 76, 562–564 (2000).

    Article  CAS  Google Scholar 

  12. Mandl, B. et al. Au-free epitaxial growth of InAs nanowires. Nano Lett. 6, 1817–1821 (2006).

    Article  CAS  Google Scholar 

  13. Dick, K. A. et al. Failure of the vapor–liquid–solid mechanism in Au-assisted MOVPE growth of InAs nanowires. Nano Lett. 5, 761–764 (2005).

    Article  CAS  Google Scholar 

  14. Persson, A. I., Samuelson, L. & Wallenberg, L. R. Solid-phase diffusion mechanism for GaAs nanowire growth. Nat. Mater. 3, 677–681 (2004).

    Article  CAS  Google Scholar 

  15. Harmand, J. C., Patriarche, G. & Glas, F. Analysis of vapor–liquid–solid mechanism in Au-assisted GaAs nanowire growth. Appl. Phys. Lett. 87, 203101–1, 3 (2005).

    Article  Google Scholar 

  16. Massalski, T. B. et al. (ed.) Binary Alloy Phase Diagrams 2nd edn Vol. 1 (ASM International, Materials Park, Ohio, 1998).

    Google Scholar 

  17. Osada, Y. et al. Growth and structure of silicon fibers. J. Electrochem. Soc. 126, 31–36 (1979).

    Article  CAS  Google Scholar 

  18. Whang, S. J. et al. High quality single crystal Al-catalyzed Si nanowires. (Conference abstract, 210th ECS Meeting, Cancun, Mexico, 2006).

  19. Civale, Y., Nanver, L. K., Hadley, P. & Goudena, E. J. G. Aspects of silicon nanowire synthesis by aluminum-catalyzed vapor-liquid-solid mechanism. Proceedings of the 7th Annual Workshop on Semiconductor Advances for Future Electronics (SAFE), Veldhoven, The Netherlands, 2004, 692–696.

  20. Boatright, R. L. & McCaldin, J. O. Solid-state growth of Si to produce planar layers. J. Appl. Phys. 47, 2260–2262 (1975).

    Article  Google Scholar 

  21. Civale, Y. et al. Sub-500 °C solid-phase epitaxy of ultra-abrupt p+-silicon elevated contacts and diodes. IEEE Electron. Dev. Lett. 27, 341–343 (2006).

    Article  CAS  Google Scholar 

  22. Tanaka, T. & Hara, S. Thermodynamic evaluation of binary phase diagrams of small particle systems. Z. Metallkd. 92, 467–472 (2001).

    CAS  Google Scholar 

  23. Westwater, J., Gosain, D. P., Tomiya, S., Usui, S. & Ruda, H. Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction. J. Vac. Sci. Technol. B 15, 554–557 (1997).

    Article  CAS  Google Scholar 

  24. Schmidt, V., Senz, S. & Gösele, U. UHV chemical vapour deposition of silicon nanowires. Z. Metallkd. 96, 427–428 (2005).

    Article  CAS  Google Scholar 

  25. Majni, G. & Ottaviani, G. Large-area uniform growth of <100> Si through Al film by solid epitaxy. Appl. Phys. Lett. 31, 125–126 (1977).

    Article  CAS  Google Scholar 

  26. Shchetinin, A. A. et al. Distribution coefficient of the initiating impurity and its influence on the electrical resistivity of filamentary silicon crystals. Inorg. Mater. 27, 1137–1139 (1991).

    Google Scholar 

  27. Fujikawa, S. I., Hirano, K. I. & Fukushima, Y. Diffusion of silicon in aluminum. Metall. Trans. A 9A, 1811–1815 (1978).

    Article  CAS  Google Scholar 

  28. Wagner, R. S. & Ellis, W. C. The vapor–liquid–solid mechanism of crystal growth and its application to silicon. Trans. Metall. Soc. AIME 233, 1053–1064 (1965).

    CAS  Google Scholar 

  29. Givargizov, E. I. Fundamental aspects of VLS growth. J. Cryst. Growth 31, 20–30 (1975).

    Article  CAS  Google Scholar 

  30. Bootsma, G. A. & Gassen, H. J. A quantitative study on the growth of silicon whiskers from silane and germanium whiskers from germane. J. Cryst. Growth 10, 223–234 (1971).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly funded by the EU project NODE 015783.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yewu Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Schmidt, V., Senz, S. et al. Epitaxial growth of silicon nanowires using an aluminium catalyst. Nature Nanotech 1, 186–189 (2006). https://doi.org/10.1038/nnano.2006.133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing