Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mechanochemistry: targeted delivery of single molecules

Abstract

The use of scanning probe microscopy-based techniques to manipulate single molecules1 and deliver them in a precisely controlled manner to a specific target represents a significant nanotechnological challenge2,3. The ultimate physical limit in the design and fabrication of organic surfaces can be reached using this approach. Here we show that the atomic force microscope (AFM), which has been used extensively to investigate the stretching of individual molecules4,5,6,7,8,9,10,11,12, can deliver and immobilize single molecules, one at a time, on a surface. Reactive polymer molecules, attached at one end to an AFM tip, are brought into contact with a modified silicon substrate to which they become linked by a chemical reaction. When the AFM tip is pulled away from the surface, the resulting mechanical force causes the weakest bond — the one between the tip and polymer — to break. This process transfers the polymer molecule to the substrate where it can be modified by further chemical reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecule by molecule delivery process.
Figure 2: Force curves obtained between PNSA-modified gold-coated AFM tips and an NH2-modified silicon substrate in N,N-dimethylformamide.
Figure 3: Histogram of the rupture forces between PNSA-modified AFM tips and an NH2-modified silicon substrate in N,N-dimethylformamide.
Figure 4: AFM topography images obtained in air after the delivery.

Similar content being viewed by others

References

  1. Gimzewski, J. K. & Joachim, C. Nanoscale science of single molecules using local probes. Science 283, 1683–1688 (1999).

    Article  Google Scholar 

  2. Ginger, D. S., Zhang, H. & Mirkin, C. A. The evolution of dip-pen nanolithography. Angew. Chem. Int. Edn. 43, 30–45 (2004).

    Article  Google Scholar 

  3. Loos, J. The art of SPM: scanning probe microscopy in materials science. Adv. Mater. 17, 1821–1833 (2005).

    Article  CAS  Google Scholar 

  4. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  Google Scholar 

  5. Marszalek, P. E., Oberhauser, A. F., Pang, Y.-P. & Fernandez, J. M. Polysaccharide elasticity governed by chair-boat transitions of the glucopyranose ring. Nature 396, 661–664 (1998).

    Article  CAS  Google Scholar 

  6. Smith, B. L. et al. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761–763 (1999).

    Article  CAS  Google Scholar 

  7. Clausen-Schaumann, H., Seitz, M., Krautbauer, R. & Gaub, H. E. Force spectroscopy with single bio-molecules. Curr. Opin. Chem. Biol. 4, 524–530 (2000).

    Article  CAS  Google Scholar 

  8. Janshoff, A., Neitaert, M., Oberdoerfer, Y. & Fuchs, H. Force spectroscopy of molecular systems — single molecule spectroscopy of polymers and biomolecules. Angew. Chem. Int. Edn. 39, 3212–3237 (2000).

    Article  CAS  Google Scholar 

  9. Hugel, T. & Seitz, M. The study of molecular interactions by AFM force spectroscopy. Macromol. Rapid Commun. 22, 989–1016 (2001).

    Article  CAS  Google Scholar 

  10. Evans, E. Probing the relation between force–lifetime–and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001).

    Article  CAS  Google Scholar 

  11. Bustamante, C., Chemla, Y. R., Forde, N. R. & Izhaky, D. Mechanical processes in biochemistry. Annu. Rev. Biochem. 73, 705–748 (2004).

    Article  CAS  Google Scholar 

  12. Kienberger, F., Andreas Ebner, A., Gruber, H. J. & Hinterdorfer, P. Molecular recognition imaging and force spectroscopy of single biomolecules. Acc. Chem. Res. 39, 29–36 (2006).

    Article  CAS  Google Scholar 

  13. Haschke, H., Miles, M. J. & Koutsos, V. Conformation of a single polyacrylamide molecule adsorbed onto a mica surface studied with atomic force microscopy. Macromolecules 37, 3799–3803 (2004).

    Article  CAS  Google Scholar 

  14. Jérôme, C., Willet, N., Jérôme, R. & Duwez, A.-S. Electrografting of polymers onto AFM tips: a novel approach for chemical force microscopy and force spectroscopy. ChemPhysChem 5, 147–149 (2004).

    Article  Google Scholar 

  15. Taunton, H. J., Toprakcioglu, C., Fetters, L. J. & Klein, J. Forces between surfaces bearing terminally anchored polymer chains in good solvents. Nature 332, 712–714 (1988).

    Article  CAS  Google Scholar 

  16. Butt, H.-J. et al. Steric forces measured with the atomic force microscope at various temperatures. Langmuir 15, 2559–2565 (1999).

    Article  CAS  Google Scholar 

  17. Zhang, W., Cui, S., Fu, Y. & Zhang, X. Desorption force of poly(4-vinylpyridine) layer assemblies from amino groups modified substrates. J. Phys. Chem. B 106, 12705–12708 (2002).

    Article  CAS  Google Scholar 

  18. Bustamante, C., Marko, J. F. & Siggia, E. D. Entropic elasticity of λ-phage DNA. Science 265, 1599–1600 (1994).

    Article  CAS  Google Scholar 

  19. Marko, J. F. & Siggia, E. D. Stretching DNA. Macromolecules 28, 8759–8770 (1995).

    Article  CAS  Google Scholar 

  20. Grandbois, M., Beyer, M., Rief, M., Clausen-Schaumann, H. & Gaub, H. E. How strong is a covalent bond? Science 283, 1727–1730 (1999).

    Article  CAS  Google Scholar 

  21. Beyer, M. K. & Clausen-Schaumann, H. Mechanochemistry: the mechanical activation of covalent bonds. Chem. Rev. 105, 2921–2948 (2005).

    Article  CAS  Google Scholar 

  22. Gomes, J. R. B. & Gomes, J. A. N. F. Adsorption of the formyl species on transition metal surfaces. J. Electroanal. Chem. 483, 180–187 (2000).

    Article  CAS  Google Scholar 

  23. Baxter, R. J., Teobaldi, G. & Zerbetto, F. Modeling the adsorption of alkanes on an Au(111) surface. Langmuir 19, 7335–7340 (2003).

    Article  CAS  Google Scholar 

  24. Montalti, M. et al. Kinetics of place-exchange reactions of thiols on gold nanoparticles. Langmuir 19, 5172–5174 (2003).

    Article  CAS  Google Scholar 

  25. Rapino, S. & Zerbetto, F. Modeling the stability and the motion of DNA nucleobases on the gold surface. Langmuir 21, 2512–2518 (2005).

    Article  CAS  Google Scholar 

  26. Sheiko, S. S. Imaging of polymers using scanning force microscopy: from superstructures to individual molecules. Adv. Polym. Sci. 151, 61–174 (2000).

    Article  CAS  Google Scholar 

  27. Kiriy, A. et al. Chemical contrasting in a single polymer molecule AFM experiment. J. Am. Chem. Soc. 125, 11202–11203 (2003).

    Article  CAS  Google Scholar 

  28. Jérôme, C. et al. Preparation of reactive surfaces by electrografting. Chem. Commun. 2500–2501 (2003).

  29. Dupres, V. et al. Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nature Methods 2, 515–520 (2005)

    Article  CAS  Google Scholar 

  30. Fustin, C.-A., Glasser, G., Spiess, H. W. & Jonas, U. Parameters influencing the templated growth of colloidal crystals on chemically patterned surfaces. Langmuir 20, 9114–9123 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C.-A. Fustin (UCL-CMAT) for preparing the amino-functionalized silicon substrates. The work was supported by the Belgian Science Policy in the frame of IUAP V/03 “Supramolecular Chemistry & Supramolecular Catalysis”.

Author information

Authors and Affiliations

Authors

Contributions

A.S.D. conceived and designed the experiments, S.C. performed the experiments, and S.G. and C.J. prepared the functionalized AFM tips and contributed to the experimental design. S.R. and F.Z. performed the calculations. A.S.D., S.C., S.R. and F.Z. analysed the data and discussed the results. A.S.D. and F.Z. co-wrote the paper.

Corresponding author

Correspondence to Anne-Sophie Duwez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures 1-4 (PDF 179 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duwez, AS., Cuenot, S., Jérôme, C. et al. Mechanochemistry: targeted delivery of single molecules. Nature Nanotech 1, 122–125 (2006). https://doi.org/10.1038/nnano.2006.92

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.92

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing