Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct growth of aligned carbon nanotubes on bulk metals

Abstract

There are several advantages of growing carbon nanotubes (CNTs) directly on bulk metals, for example in the formation of robust CNT–metal contacts during growth. Usually, aligned CNTs1,2,3,4,5,6,7,8,9 are grown either by using thin catalyst layers predeposited on substrates1,2,3,4,5,6,7 or through vapour-phase catalyst delivery7,8,9. The latter method, although flexible, is unsuitable for growing CNTs directly on metallic substrates. Here we report on the growth of aligned multiwalled CNTs on a metallic alloy, Inconel 600 (Inconel), using vapour-phase catalyst delivery. The CNTs are well anchored to the substrate and show excellent electrical contact with it. These CNT–metal structures were then used to fabricate double-layer capacitors and field-emitter devices, which demonstrated improved performance over previously designed CNT structures. Inconel coatings can also be used to grow CNTs on other metallic substrates. This finding overcomes the substrate limitation for nanotube growth which should assist the development of future CNT-related technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aligned MWNTs grown on different geometries of Inconel substrates.
Figure 2: Mechanical and electrical characterization of the CNT–Inconel interface.
Figure 3: Double-layer capacitor measurements of CNT–Inconel sheets.
Figure 4: Field-emission characteristics of the CNT–Inconel electrodes.

Similar content being viewed by others

References

  1. Li, W. Z. et al. Large scale synthesis of aligned carbon nanotubes. Science 274, 1701–1703 (1996).

    Article  CAS  Google Scholar 

  2. Ren, Z. F. et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998).

    Article  CAS  Google Scholar 

  3. Andrews, R. et al. Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chem. Phys. Lett. 303, 467–474 (1999).

    Article  CAS  Google Scholar 

  4. Huczko, A. Synthesis of aligned carbon nanotubes. Appl. Phys. A 74, 617–638 (2002).

    Article  CAS  Google Scholar 

  5. Wang, B. et al. Controllable preparation of patterns of aligned carbon nanotubes on metals and metal-coated silicon substrates. J. Mater. Chem. 13, 1124–1126 (2003).

    Article  CAS  Google Scholar 

  6. Kind, H. et al. Patterned films of nanotubes using microcontact printing of catalysts. Adv. Mater. 11, 1285–1289 (1999).

    Article  CAS  Google Scholar 

  7. Ng, T. H. et al. Growth of carbon nanotubes: a combinatorial method to study the effects of catalysts and underlayers. J. Phys. Chem. B 107, 8484–8489 (2003).

    Article  CAS  Google Scholar 

  8. Terrones, M. et al. Controlled production of aligned-nanotube bundles. Nature 388, 52–55 (1997).

    Article  CAS  Google Scholar 

  9. Wei, B. Q. et al. Organized assembly of carbon nanotubes. Nature 416, 495–496 (2002).

    Article  CAS  Google Scholar 

  10. Dresselhaus, M. S., Dresselhaus G. & Avouris, P. (eds). Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer, Heidelberg, 2001).

    Book  Google Scholar 

  11. Jarillo-Herrero, P., van Dam, J. A. & Kouwenhoven, L. P. Quantum supercurrent transistors in carbon nanotubes. Nature 439, 953–956 (2006).

    Article  CAS  Google Scholar 

  12. Fan, S. et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283, 512–514 (1999).

    Article  CAS  Google Scholar 

  13. Cao, A., Vinod, V., Li, X., Yao, Z., Ghasemi-Nejhad, M. & Ajayan, P. M. Multifunctional brushes made from carbon nanotubes. Nature Mater. 4, 540–545 (2005).

    Article  CAS  Google Scholar 

  14. Teo, K. B. K. et al. Carbon nanotubes as cold cathodes. Nature 437, 968 (2005).

    Article  CAS  Google Scholar 

  15. Bandaru, P. R., Daraio, C., Jin, S. & Rao, A. M. Novel electrical switching behaviour and logic in carbon nanotube Y-junctions. Nature Mater. 4, 663–666 (2005).

    Article  CAS  Google Scholar 

  16. Xu, F., Liu, X. & Tse, S. Synthesis of carbon nanotubes on metal alloy substrates with voltage bias in methane inverse diffusion flames. Carbon 44, 570–577 (2006).

    Article  CAS  Google Scholar 

  17. Karwa, M., Iqbal, Z. & Mitra, S. Scaled-up self assembly of carbon nanotubes inside long stainless steel tubing. Carbon 44, 1235–1242 (2006).

    Article  CAS  Google Scholar 

  18. Graugnard, E., de Pablo, P. J., Walsh, B. A., Ghosh, W., Datta, S. & Reifenberger, R. Temperature dependence of the conductance of multiwalled carbon nanotubes. Phys. Rev. B 64, 125407 (2001).

    Article  Google Scholar 

  19. Davydov, D. N., Li, J., Shelimov, K. B., Haslett, T. L., Moskovits, M. & Statt, B. W. Resistance and tunneling spectra of aligned multiwalled carbon nanotube arrays. J. Appl. Phys. 88, 7205–7208 (2000).

    Article  CAS  Google Scholar 

  20. Burke, A. Ultracapacitors: why, how, and where is the technology. J. Power Sources 91, 37–50 (2000).

    Article  CAS  Google Scholar 

  21. Du, C., Yeh, J. & Pan N. High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology 16, 350–353 (2005).

    Article  CAS  Google Scholar 

  22. Jung, Y. et al. Aligned carbon nanotube polymer hybrid architectures for diverse flexible electronic application. Nano Lett. 6, 413–418 (2006).

    Article  CAS  Google Scholar 

  23. Sveningsson, M., Jönsson, M., Nerushev, O. A., Rohmund, F. & Campbell, E. E. B. Blackbody radiation from resistively heated multiwalled carbon nanotubes during field emission. Appl. Phys. Lett. 81, 1095–1907 (2002).

    Article  CAS  Google Scholar 

  24. Sveningsson, M. et al. Raman spectroscopy and field-emission properties of CVD-grown carbon-nanotube films. Appl. Phys. A 73, 409–418 (2001).

    Article  CAS  Google Scholar 

  25. Jung, Y. J., Wei, B. Q., Vajtai, R., Ajayan, P. M., Homma, Y., Prabhakaran, K. & Ogino, T. Mechanism of selective growth of carbon nanotubes on SiO2/Si patterns. Nano Lett. 3, 561–564 (2003).

    Article  CAS  Google Scholar 

  26. Liu, C., Cheng, A., Clark, M. & Tzeng, Y. Effects of interfacial layers on thermal chemical vapour deposition of carbon nanotubes using iron catalyst. Diam. Relat. Mater. 14, 835–840 (2005).

    Article  CAS  Google Scholar 

  27. Nihei, M., Horibe, M., Kawabata, A. & Awano, Y. Simultaneous formation of multiwall carbon nanotubes and their end-bonded ohmic contacts to Ti electrodes for future ULSI interconnects. Jap. J. Appl. Phys. 43, 1856–1859 (2004).

    Article  CAS  Google Scholar 

  28. Kreupl, F., Graham, A. P., Liebau, M., Duesberg, G. S., Seidel, R. & Unger, E. Carbon nanotubes for interconnect applications. http://arxiv.org/ftp/cond-mat/papers/0412/0412537.pdf

  29. Naeemi, A., Sarvari, R. & Meindl, J. D. Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI). IEEE Electron. Device Lett. 26, 84–86 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding support received from the RPI Nanoscale Science and Engineering Initiative of the National Science Foundation under NSF Grant No. DMR-0117792 and the Interconnect Focus Center New York at RPI. S.T. thanks X. Li for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Talapatra.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures 1-3 and table I (PDF 530 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talapatra, S., Kar, S., Pal, S. et al. Direct growth of aligned carbon nanotubes on bulk metals. Nature Nanotech 1, 112–116 (2006). https://doi.org/10.1038/nnano.2006.56

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.56

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing