Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Making molecular machines work

Abstract

In this review we chart recent advances in what is at once an old and very new field of endeavour — the achievement of control of motion at the molecular level including solid-state and surface-mounted rotors, and its natural progression to the development of synthetic molecular machines. Besides a discussion of design principles used to control linear and rotary motion in such molecular systems, this review will address the advances towards the construction of synthetic machines that can perform useful functions. Approaches taken by several research groups to construct wholly synthetic molecular machines and devices are compared. This will be illustrated with molecular rotors, elevators, valves, transporters, muscles and other motor functions used to develop smart materials. The demonstration of molecular machinery is highlighted through recent examples of systems capable of effecting macroscopic movement through concerted molecular motion. Several approaches to illustrate how molecular motor systems have been used to accomplish work are discussed. We will conclude with prospects for future developments in this exciting field of nanotechnology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: What makes a molecule a machine?
Figure 2: Examples of non-directionally controlled molecular rotors.
Figure 3: Chemically fuelled autonomously moving objects.
Figure 4: Rotary molecular motors in which a sequence of steps results in a full 360° unidirectional movement around the central axis.
Figure 5: Light-driven unidirectional rotary motors in action.
Figure 6: Synthetic molecular systems designed to achieve translational motion.
Figure 7: Systems designed as multicomponent mechanical machines.
Figure 8: Two approaches to the opening and closing of nanovalves using molecular switches.

Similar content being viewed by others

References

  1. Berg, J. M., Tymoczko, J. L. & Stryer, L. Biochemistry 5th edn (W. H. Freeman, New York, 2006).

    Google Scholar 

  2. Kinbara, K. & Aida, T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105, 1377–1400 (2005).

    Article  CAS  Google Scholar 

  3. Schliwa, M. (ed.) Molecular Motors (Wiley-VCH, Weinheim, Germany 2003).

    Google Scholar 

  4. Boyer, P. D. Molecular motors: What makes ATP synthase spin? Nature 402, 247–249 (1999).

    Article  CAS  Google Scholar 

  5. Bray, D. Cell Movements: From Molecules to Motility (Garland, New York, 1992).

    Google Scholar 

  6. Hess, H. & Bachand, G. D. Biomolecular motors. Nanotoday 8, 22–29 (2005).

    Google Scholar 

  7. Hess, H. & Vogel, V. Molecular shuttles based on motor proteins: active transport in synthetic environments. Rev. Mol. Biotechnol. 82, 67–85 (2001).

    Article  CAS  Google Scholar 

  8. Yan, H., Zhang, X. P., Shen, Z. Y. & Seeman, N. C. A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002).

    Article  CAS  Google Scholar 

  9. Bath, J., Green, S. J. & Turberfield, A. J. A free-running DNA motor powered by a nicking enzyme. Angew. Chem. Int. Edn 44, 4358–4361 (2005).

    Article  CAS  Google Scholar 

  10. Alberti P. & Mergny J. L. DNA duplex-quadruplex exchange as the basis for a nanomolecular machine. Proc. Natl Acad. Sci. USA 100, 1569–1573 (2003).

    Article  CAS  Google Scholar 

  11. Abraham, R. T. & Tibbetts, R. S. Cell biology: Guiding ATM to broken DNA. Science 308, 510–511 (2005).

    Article  CAS  Google Scholar 

  12. Feynman, R. P. The Pleasure of Finding Things Out (Perseus Books: Cambridge, Massachusetts, 1999). There's Plenty of Room at the Bottom www.its.caltech.edu/~feynman

  13. Davis, A. P. Synthetic molecular motors. Nature 401, 120–121 (1999).

    Article  CAS  Google Scholar 

  14. Harada, A. Cyclodextrin-based molecular machines. Acc. Chem. Res. 34, 456–464 (2001).

    Article  CAS  Google Scholar 

  15. Amendola, V., Fabbrizzi, L., Mangano, C. & Pallavicini, P. Molecular machines based on metal ion translocation. Acc. Chem. Res. 34, 488–493 (2001).

    Article  CAS  Google Scholar 

  16. Collin, J.-P., Dietrich-Buchecker, C., Gavina, P., Jimenez-Molero, M. C. & Sauvage, J.-P. Shuttles and muscles: linear molecular machines based on transition metals. Acc. Chem. Res. 34, 477–487 (2001).

    Article  CAS  Google Scholar 

  17. Sauvage, J.-P. (ed.) Molecular Machines and Motors (Springer, Berlin, 2001).

    Book  Google Scholar 

  18. Feringa, B. L. In control of motion: from molecular switches to molecular motors. Acc. Chem. Res. 34, 504–513 (2001).

    Article  CAS  Google Scholar 

  19. Feringa, B. L., van Delden, R. A., Koumura, N. & Geertsema, E. M. Chiroptical molecular switches. Chem. Rev. 100, 1789–1816 (2001).

    Article  CAS  Google Scholar 

  20. Stoddart, J. F. Molecular machines. Acc. Chem. Res. 34, 410–411 (2001).

    Article  CAS  Google Scholar 

  21. Feringa, B. L. (ed.) Molecular Switches (Wiley-VCH, Weinheim, Germany, 2001).

    Book  Google Scholar 

  22. Easton, C. J., Lincoln, S. F., Barr, L. & Onagi, H. Molecular reactors and machines: How useful are molecular mechanical devices? Chem. Eur. J. 10, 3120–3128 (2004).

    Article  CAS  Google Scholar 

  23. Ozin, G. A., Manners, I., Fournier-Bidoz, S. & Arsenault, A. Dream machines. Adv. Mater. 17, 3011–3018 (2005).

    Article  CAS  Google Scholar 

  24. Soanes, C. & Stevenson, A. (eds) Oxford Dictionary of English (Oxford Univ. Press, Oxford, 2005).

    Google Scholar 

  25. Astumian, R. D. Making molecules into motors. Sci. Am. 285, 45–51 (2001).

    Article  Google Scholar 

  26. Astumian, R. D. Thermodynamics and kinetics of a brownian motor. Science 276, 917–922 (1997).

    Article  CAS  Google Scholar 

  27. Rozenbaum, V. M., Yang, D.-Y., Lin, S. H. & Tsong, T. Y. Catalytic wheel as a brownian motor. J. Phys. Chem. B 108, 15880–15889 (2004).

    Article  CAS  Google Scholar 

  28. Whitesides, G. M. The once and future nanomachine. Biology outmatches futurists' most elaborate fantasies for molecular robots. Sci. Am. 285, 78–84 (2001).

    Article  CAS  Google Scholar 

  29. Chatterjee, M. N., Kay, E. R. & Leigh, D. A. Beyond switches: Ratcheting a particle energetically uphill with a compartmentalized molecular machine. J. Am. Chem. Soc. 128, 4058–4073 (2006).

    Article  CAS  Google Scholar 

  30. Siegel, J. Inventing the nanomolecular wheel. Science 310, 63–64 (2005).

    Article  CAS  Google Scholar 

  31. Rapenne, G. Synthesis of technomimetic molecules: towards rotation control in single molecular machines and motors. Org. Biomol. Chem. 3, 1165–1169 (2005).

    Article  CAS  Google Scholar 

  32. Garcia-Garibay, M. A. Crystalline molecular machines: Encoding supramolecular dynamics into molecular structure. Proc. Natl Acad. Sci. USA 102, 10771–10776 (2005).

    Article  CAS  Google Scholar 

  33. Khuong, T.-A. V., Zepeda, G., Ruiz, R., Khan, S. I. & Garcia-Garibay, M. A. Molecular compasses and gyroscopes: Engineering molecular crystals with fast internal rotation. Cryst. Growth Des. 4, 15–18 (2004).

    Article  CAS  Google Scholar 

  34. Caskey, D. C. & Michl, J. Toward self-assembled surface-mounted prismatic altitudinal rotors. A test case: trigonal and tetragonal prisms. J. Org. Chem. 70, 5442–5448 (2005).

    Article  CAS  Google Scholar 

  35. Horinek, D. & Michl, J. Surface-mounted altitudinal molecular rotors in alternating electric field: single-molecule parametric oscillator molecular dynamics. Proc. Natl Acad. Sci. USA 102, 14175–14180 (2005).

    Article  CAS  Google Scholar 

  36. Hawthorne, M. F. et al. Electrical or photocontrol of the rotary motion of a metallacarborane. Science 303, 1849–1851 (2004).

    Article  CAS  Google Scholar 

  37. Nawara, A. J., Shima, T., Hampel, F. & Gladysz, J. A. Gyroscope-like molecules consisting of PdX2/PtX2 rotators encased in three-spoke stators: synthesis via alkene metathesis, and facile substitution and demetalation. J. Am. Chem. Soc. 128, 4962–4963 (2006).

    Article  CAS  Google Scholar 

  38. Khuong, T.-A. V., Nuñez, J. E., Godinez, C. E. & Garcia-Garibay, M. A. Crystalline molecular machines: A quest toward solid-state dynamics and function. Acc. Chem. Res. 39, 413–422 (2006).

    Article  CAS  Google Scholar 

  39. Kottas, G. S., Clarke, L. I., Horinek, D. & Michl, J. Artificial molecular rotors. Chem. Rev. 105, 1281–1376 (2005).

    Article  CAS  Google Scholar 

  40. Rustem, F., Ismagilov, A. S., Bowden, N. & Whitesides, G. M. Autonomous movement and self-assembly. Angew. Chem. Int. Edn 41, 652–654 (2002).

    Article  Google Scholar 

  41. Paxton, W. F. et al. Catalytic nanomotors: Autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 13424–13431 (2004).

    Article  CAS  Google Scholar 

  42. Kline, T. R., Paxton, W. F., Mallouk, T. E. & Sen, A. Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Int. Edn 44, 744–746 (2005).

    Article  CAS  Google Scholar 

  43. Fournier-Bidoz, S., Arsenault, A. C., Manners, I. & Ozin, G. A. Synthetic self-propelled nanorotors. Chem. Commun. 441–443 (2005).

  44. DiLuzio, W. R. et al. Escherichia coli swim on the right-hand side. Nature 435, 1271–1274 (2005).

    Article  CAS  Google Scholar 

  45. Vicario, J. et al. Catalytic molecular motors: Fueling autonomous movement by surface bond synthetic Manganese catalases. Chem. Commun. 3936–3938 (2005).

  46. Ballardini, R., Balzani, V., Credi, A., Gandolfi, M. T. & Venturi, M. Artificial molecular-level machines: Which energy to make them work? Acc. Chem. Res. 34, 445–455 (2001).

    Article  CAS  Google Scholar 

  47. Kelly, T. R., De Silva, H. & Silva, R. A. Undirectional rotary motion in a molecular system. Nature 401, 150–152 (1999).

    Article  CAS  Google Scholar 

  48. Fletcher, S. P., Dumur, F., Pollard, M. M. & Feringa, B. L. A reversible, unidirectional molecular rotary motor driven by chemical energy. Science 310, 80–82 (2005).

    Article  CAS  Google Scholar 

  49. Leigh, D. A., Wong, J. K. Y., Dehez, F. & Zerbetto, F. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424, 174–179 (2003).

    Article  CAS  Google Scholar 

  50. Hernandez, J. V., Kay, E. R. & Leigh, D. A. A reversible synthetic rotary molecular motor. Science 306, 1532–1537 (2004).

    Article  CAS  Google Scholar 

  51. Koumura, N. Zijlstra, R. W. J., van Delden R. A., Harada, N. & Feringa, B. L. Light-driven molecular rotor. Nature 401, 152–155 (1999).

    Article  CAS  Google Scholar 

  52. Feringa, B. L., van Delden, R. A. & ter Wiel, M. K. J. In control of switching, motion, and organization. Pure Appl. Chem. 75, 563–575 (2003).

    Article  CAS  Google Scholar 

  53. Koumura, N., Geertsema, E. M., van Gelder, M. B., Meetsma, A. & Feringa, B. L. Second generation light-driven molecular motors. Unidirectional rotation controlled by a single stereogenic center with near-perfect photoequilibria and acceleration of the speed of rotation by structural modification. J. Am. Chem. Soc. 124, 5037–5051 (2002).

    Article  CAS  Google Scholar 

  54. van Delden, R. A. et al. Unidirectional molecular motor on a gold surface. Nature 437, 1337–1340 (2005).

    Article  CAS  Google Scholar 

  55. Kwok, W. M. et al. Time-resolved resonance Raman study of S-1 cis-stilbene and its deuterated isotopomers. J. Raman Spec. 34, 886–891 (2003).

    Article  CAS  Google Scholar 

  56. Vicario, J., Walko, M., Meetsma, A. & Feringa, B. L. Fine tuning of the rotary motion by structural modification in light-driven unidirectional molecular motors. J. Am. Chem. Soc. 128, 5127–5135 (2006).

    Article  CAS  Google Scholar 

  57. Schalley, C. A., Beizai, K. & Vogtle, F. On the way to rotaxane-based molecular motors: Studies in molecular mobility and topological chirality. Acc. Chem. Res. 34, 465–476 (2001).

    Article  CAS  Google Scholar 

  58. Bissell, R. A., Cordova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994).

    Article  CAS  Google Scholar 

  59. Alteri, A. et al. Electrochemically switchable hydrogen-bonded molecular shuttles. J. Am. Chem. Soc. 125, 8644–8654 (2003).

    Article  CAS  Google Scholar 

  60. Nygaard, S. et al. Quantifying the working stroke of tetrathiafulvalene-based electrochemically-driven linear motor-molecules. Chem. Commun. 144–146 (2006).

  61. Lowe, J. N., Silvi, S., Stoddart, J. F., Badjic, J. D. & Credi, A. A mechanically interlocked bundle. Chem. Eur. J. 10, 1926–1935 (2004).

    Article  CAS  Google Scholar 

  62. Perez, E. M., Dryden, D. T. F., Leigh, D. A., Teobaldi, G. & Zerbetto, F. A generic basis for some simple light-operated mechanical molecular machines. J. Am. Chem. Soc. 126, 12210–12211 (2004).

    Article  CAS  Google Scholar 

  63. Brouwer, A. M. et al. Photoinduction of fast, reversible translational motion in a hydrogen-bonded molecular shuttle. Science 291, 2124–2128 (2001).

    Article  CAS  Google Scholar 

  64. Kay, E. R. & Leigh, D. A. Photochemistry: lighting up nanomachines. Nature 440, 286–287 (2006).

    Article  CAS  Google Scholar 

  65. Balzani, V. et al. Autonomous artificial nanomotor powered by sunlight. Proc. Natl Acad. Sci. USA 103, 1178–1183 (2006).

    Article  CAS  Google Scholar 

  66. Jimenez-Molero, C. M., Dietrich-Buchecker, C. & Sauvage, J. P. Towards artificial muscles at the nanometric level. Chem. Commun. 1613–1616 (2003).

  67. Perkins, T. T., Li, H. -W, Dalal, R. V., Gelles, J. & Block, S. M. Forward and reverse motion of single RecBCD molecules on DNA. Biophys. J. 86, 1640–1648 (2001).

    Article  Google Scholar 

  68. Thordarson, P., Bijsterveld, E. J. A., Rowan, A. E. & Nolte, R. J. M. Epoxidation of polybutadiene by a topologically linked catalyst. Nature 424, 915–918 (2003).

    Article  CAS  Google Scholar 

  69. Badjic, J. D., Balzani, V., Credi, A., Silvi, S. & Stoddart, J. F. A molecular elevator. Science 303, 1845–1849 (2004).

    Article  CAS  Google Scholar 

  70. Badjic, J. D. et al. Operating molecular elevators. J. Am. Chem. Soc. 128, 1489–1499 (2006).

    Article  CAS  Google Scholar 

  71. Muraoka, T., Kinbara, K., Kobayashi, Y. & Aida, T. Light-driven open-close motion of chiral molecular scissors. J. Am. Chem. Soc. 125, 5612–5613 (2003).

    Article  CAS  Google Scholar 

  72. Muraoka, T., Kinbara, K. & Aida, T. Mechanical twisting of a guest by a photoresponsive host. Nature 440, 512–515 (2006).

    Article  CAS  Google Scholar 

  73. Morin, J.-F., Shirai, Y. & Tour, J. M. En route to a motorized nanocar. Org. Lett. 8, 1713–1716 (2006).

    Article  CAS  Google Scholar 

  74. Zheng, X. et al. Dipolar and nonpolar altitudinal molecular rotors mounted on a Au(111) surface. J. Am. Chem. Soc. 126, 4540–4542 (2004).

    Article  CAS  Google Scholar 

  75. Magnera, T. F. & Michl, J. Altitudinal surface-mounted molecular rotors. Top. Curr. Chem. 262, 63–97 (2005).

    Article  CAS  Google Scholar 

  76. Otsuki, J., Kawaguchi, S., Yamakawa, T., Asakawa, M. & Miyake, K. Arrays of double-decker porphyrins on highly oriented pyrolytic graphite. Langmuir 22, 5708–5715 (2006).

    Article  CAS  Google Scholar 

  77. Ikeda, M., Takeuchi, M., Shinkai, S., Tani, F. & Naruta Y. Synthesis of new diaryl-substituted triple-decker and tetraaryl-substituted double-decker lanthanum(III) porphyrins and their porphyrin ring rotational speed as compared with that of double-decker cerium(IV) porphyrins. Bull. Chem. Soc. Jpn 74, 739–746 (2001).

    Article  CAS  Google Scholar 

  78. Thomas, K. G., Ipe, B. I. & Sudeep, P. K. Photochemistry of chromophore-functionalized gold nanoparticles. Pure Appl. Chem. 74, 1731–1738 (2002).

    Article  CAS  Google Scholar 

  79. Ashton, P. R. et al. A three-pole supramolecular switch. J. Am. Chem. Soc. 121, 3951–3957 (1999).

    Article  CAS  Google Scholar 

  80. Huang, T. J. et al. Mechanical shuttling of linear motor-molecules in condensed phases on solid substrates. Nano Lett. 4, 2065–2071 (2004).

    Article  CAS  Google Scholar 

  81. Flood, A. H., Wong, E. W. & Stoddart, J. F. Models of charge transport and transfer in molecular switch tunnel junctions of bistable catenanes and rotaxanes. Chem. Phys. 324, 280–290 (2006).

    Article  CAS  Google Scholar 

  82. DeIonno, E., Tseng, H.-R., Harvey, D. D., Stoddart, J. F. & Heath, J. R. Infrared spectroscopic characterization of [2]rotaxane molecular switch tunnel junction devices. J. Phys. Chem. B 110, 7609–7612 (2006).

    Article  CAS  Google Scholar 

  83. Butt, H.-J. Towards powering nanometer-scale devices with molecular motors, single molecule engines. Macromol. Chem. Phys. 207, 573–575 (2006).

    Article  CAS  Google Scholar 

  84. Huang, J. et al. A nanomechanical device based on linear molecular motors. Appl. Phys. Lett. 85, 5391–5393 (2003).

    Article  CAS  Google Scholar 

  85. Liu, Y. et al. Linear artificial molecular muscles. J. Am. Chem. Soc. 127, 9745–9759 (2005).

    Article  CAS  Google Scholar 

  86. Ge, H. L. et al. Photoswitched wettability on inverse opal modified by a self-assembled azobenzene monolayer. Chem. Phys. Chem. 7, 575–578 (2006).

    Article  CAS  Google Scholar 

  87. Hugel, T., Holland, N. B., Cattani, A., Moroder, L., Seitz, M. & Gaub, H. E. Single-molecule optomechanical cycle. Science 296, 1103–1106 (2002).

    Article  Google Scholar 

  88. Botelho, A. V., Gibson, N. J., Thurmond, R. L., Wang, Y. & Brown, M. F. Conformational energetics of rhodopsin modulated by nonlamellar-forming lipids. Biochemistry 41, 6354–6368 (2002).

    Article  CAS  Google Scholar 

  89. Takeuchi, M., Ikeda, M., Sugasaki, A. & Shinkai, S. Molecular design of artificial molecular and ion recognition systems with allosteric guest responses. Acc. Chem. Res. 34, 865–873 (2001).

    Article  CAS  Google Scholar 

  90. de Jong, J. J. D., Lucas, L. N., Kellogg, R. M., van Esch, J. H. & Feringa, B. L. Reversible optical transcription of supramolecular chirality into molecular chirality. Science 304, 278–281 (2004).

    Article  CAS  Google Scholar 

  91. Sud, D., Norsten, T. B. & Branda, N. R. Photoswitching of stereoselectivity in catalysis using a copper dithienylethene complex. Angew. Chem. Int. Edn 44, 2019–2021 (2005).

    Article  CAS  Google Scholar 

  92. Irie, M. Diarylethenes for memories and switches. Chem. Rev. 100, 1685–1716 (2000).

    Article  CAS  Google Scholar 

  93. Tsivgoulis, G. M. & Lehn, J. M. Photoswitched and functionalized oligothiophenes: Synthesis and photochemical and electrochemical properties. Chem. Eur. J. 2, 1399–1406 (1996).

    Article  CAS  Google Scholar 

  94. Dulic, D. et al. One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 91, 207402 (2003).

    Article  CAS  Google Scholar 

  95. Willner, I., Doron, A. & Katz, E. Gated molecular and biomolecular optoelectronic systems via photoisomerizable monolayer electrodes. J. Phys. Org. Chem. 11, 546–560 (1998).

    Article  CAS  Google Scholar 

  96. Willner, I. & Katz, E. Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew. Chem. Int. Edn 39, 1180–1218 (2000).

    Article  CAS  Google Scholar 

  97. Nomura, A. M., Marnett, A. B., Shimba, N., Dotsch, V. & Craik, C. S. Induced structure of a helical switch as a mechanism to regulate enzymatic activity. Nature Struc. Mol. Biol. 12, 1019–1020 (2005).

    Article  CAS  Google Scholar 

  98. Furumi, S., Kidowaki, M., Ogawa, M., Nishiura, Y. & Ichimura, K. Surface-mediated photoalignment of discotic liquid crystals on azobenzene polymer films. J. Phys. Chem. B 109, 9245–9254 (2005).

    Article  CAS  Google Scholar 

  99. Raduge, C., Papastavrou, G., Kurth, D. G. & Motschmann, H. Controlling wettability by light: illuminating the molecular mechanism. Eur. Phys. J. E 10, 103–114 (2003).

    Article  CAS  Google Scholar 

  100. Oh, S. K., Nakagawa M. & Ichimura K. Photocontrol of liquid motion on an azobenzene monolayer. J. Mater. Chem. 12, 2262–2269 (2002).

    Article  CAS  Google Scholar 

  101. Berna, J. et al. Macroscopic transport by synthetic molecular machines. Nature Mater. 4, 704–710 (2005).

    Article  CAS  Google Scholar 

  102. Eelkema, R. et al. Nanomotor rotates microscale objects. A molecular motor in a liquid-crystal film uses light to turn items thousands of times larger than itself. Nature 440, 163 (2006).

    Article  CAS  Google Scholar 

  103. van Delden, R. A., Koumura, N., Harada, N. & Feringa, B. L. Unidirectional rotary motion in a liquid crystalline environment: Color tuning by a molecular motor. Proc. Natl Acad. Sci. USA 99, 4945–4949 (2002).

    Article  CAS  Google Scholar 

  104. Holland, N. B. et al. Single molecule force spectroscopy of azobenzene polymers: switching elasticity of single photochromic macromolecules. Macromolecules 36, 2015–2023 (2003).

    Article  CAS  Google Scholar 

  105. Hugel, T. et al. Single-molecule optomechanical cycle. Science 296, 1103–1106 (2002).

    Article  Google Scholar 

  106. Harris, K. D. et al. Large amplitude light-induced motion in high elastic modulus polymer actuators. J. Mater. Chem. 15, 5043–5048 (2005).

    Article  CAS  Google Scholar 

  107. Hess, H., Bachand, G. D. & Vogel, V. Powering nanodevices with biomolecular motors. Chem. Eur. J. 10, 2110–2116 (2004).

    Article  CAS  Google Scholar 

  108. Koçer, A., Walko, M., Meijberg, W. & Feringa B. L. A light-actuated nanovalve derived from a channel protein. Science 309, 755–758 (2005).

    Article  CAS  Google Scholar 

  109. Volgraf, M. et al. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nature Chem. Biol. 2, 47–52 (2006).

    Article  CAS  Google Scholar 

  110. Kanazawa, H., Higuchi, M. & Yamamoto K. An electric cyclophane: Cavity control based on the rotation of a paraphenylene by redox switching. J. Am. Chem. Soc. 127, 16404–16405 (2005).

    Article  CAS  Google Scholar 

  111. Nguyen, T. D. et al. A reversible molecular valve. Proc. Natl. Acad. Sci. USA 102, 10029–10034 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Authors thank M. M. Pollard for many suggestions and reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben L. Feringa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Browne, W., Feringa, B. Making molecular machines work. Nature Nanotech 1, 25–35 (2006). https://doi.org/10.1038/nnano.2006.45

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.45

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing