Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Giant piezoresistance effect in silicon nanowires

Abstract

The piezoresistance effect of silicon1 has been widely used in mechanical sensors2,3,4, and is now being actively explored in order to improve the performance of silicon transistors5,6. In fact, strain engineering is now considered to be one of the most promising strategies for developing high-performance sub-10-nm silicon devices7. Interesting electromechanical properties have been observed in carbon nanotubes8,9. In this paper we report that Si nanowires possess an unusually large piezoresistance effect compared with bulk. For example, the longitudinal piezoresistance coefficient along the 〈111〉 direction increases with decreasing diameter for p-type Si nanowires, reaching as high as −3,550 × 10−11 Pa–1, in comparison with a bulk value of −94 × 10−11 Pa−1. Strain-induced carrier mobility change and surface modifications have been shown to have clear influence on piezoresistance coefficients. This giant piezoresistance effect in Si nanowires may have significant implications in nanowire-based flexible electronics, as well as in nanoelectromechanical systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 〈111〉-oriented Si nanowire bridges on SOI substrates.
Figure 2: Longitudinal piezoresistance coefficients π〈111〉σ of p-type Si nanowires.
Figure 3: Strained Si nanowire field-effect transistors.
Figure 4: Effects of surface states on the piezoresistance coefficient.

Similar content being viewed by others

References

  1. Smith, C. S. Piezoresistance effect in germanium and silicon. Phys. Rev. 94, 42–49 (1954).

    Article  Google Scholar 

  2. Tufte, O. N., Chapman, P. W. & Long, D. Silicon diffused-element piezoresistive diaphragms. J. Appl. Phys. 33, 3322–3327 (1962).

    Article  Google Scholar 

  3. Tortonese, M., Barrett, R. C. & Quate, C. F. Atomic resolution with an atomic force microscope using piezoresistive detection. Appl. Phys. Lett. 62, 834–836 (1992).

    Article  Google Scholar 

  4. Wee, K. W. et al. Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers. Biosens. Bioelectron. 20, 1932–1938 (2005).

    Article  Google Scholar 

  5. Lee, M. L., Fitzgerald, E. A., Bulsara, M. T., Currie, M. T. & Lochtefeld, A. Strained Si, SiGe and Ge channels for high-mobility metal-oxide–semiconductor field-effect transistors. J. Appl. Phys. 97, 011101 (2005).

    Article  Google Scholar 

  6. Haugerud, B. M., Bosworth, L. A. & Belford, R. E. Mechanically induced strain enhancement of metal-oxide–semiconductor field-effect transistors. J. Appl. Phys. 94, 4102–4107 (2003).

    Article  Google Scholar 

  7. Ieong, M., Doris, B., Kedzierski, J., Rim, K. & Yang, M. Silicon device scaling to the sub-10-nm regime. Science 306, 2057–2060 (2004).

    Article  Google Scholar 

  8. Tombler, T. W. et al. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405, 769–772 (2000).

    Article  Google Scholar 

  9. Maiti, A., Svizhenko, A. & Anantram, M. P. Electronic transport through carbon nanotubes: effects of structural deformation and tube chirality. Phys. Rev. Lett. 88, 126805 (2002).

    Article  Google Scholar 

  10. Wu, B., Heidelberg, A. & Boland, J. J. Mechanical properties of ultrahigh-strength gold nanowires. Nature Mater. 4, 525–529 (2005).

    Article  Google Scholar 

  11. He, R. et al. Si nanowire bridges in microtrenches: integration of growth into device fabrication. Adv. Mater. 17, 2098–2102 (2005).

    Article  Google Scholar 

  12. San Paulo, A. et al. Mechanical elasticity of single and double clamped silicon nanobeams fabricated by the vapor–liquid–solid method. Appl. Phys. Lett. 87, 053111 (2005).

    Article  Google Scholar 

  13. Mason, W. P. & Thurston, R. N. Use of piezoresistive materials in the measurement of displacement, force, and torque. J. Acoust. Soc. Am. 29, 1096–1101 (1957).

    Article  Google Scholar 

  14. Beaty, R. E., Jaeger, R. C., Suhling, J. C., Johnson, R. W. & Butler, R. D. Evaluation of piezoresistive coefficient variation in silicon stress sensors using a four-point-bending test fixture. IEEE Trans. Compon. Hybr. 15, 904–914 (1992).

    Article  Google Scholar 

  15. Matsuda, K., Suzuki, K., Yamamura, K. & Kanda, Y. Nonlinear piezoresistance effects in silicon. J. Appl. Phys. 73, 1838–1847 (1993).

    Article  Google Scholar 

  16. Kanda, Y. A graphical representation of the piezoresistance coefficients in silicon. IEEE Trans. Electron. Devices 29, 64–70 (1982).

    Article  Google Scholar 

  17. Sze, S. M. Semiconductor Devices, Physics and Technology 55 (Wiley, New York, 2002).

    Google Scholar 

  18. Lu, C., Fu, Q., Huang, S. & Liu, J. Polymer electrolyte-gated carbon nanotube field-effect transistor, Nano Lett. 4, 623–627 (2004).

    Article  Google Scholar 

  19. Bir, G. L. & Pikus, G. E. in Symmetry and Strain-Induced Effects in Semiconductors 369–391 (Wiley, New York, 1974).

    Google Scholar 

  20. Toriyama, T. & Sugiyama, S. Single crystal silicon piezoresistive nanowire bridge. Sens. Actuat. A 108, 244–249 (2003).

    Article  Google Scholar 

  21. Colman, D., Bate, R. T. & Mize, J. P. Mobility anisotropy and piezoresistance in silicon p-type inversion layers. J. Appl. Phys. 39, 1923–1931 (1967).

    Article  Google Scholar 

  22. Dorda, G. Piezoresistance in quantized conduction bands in silicon inversion layers. J. Appl. Phys. 42, 2053–2060 (1970).

    Article  Google Scholar 

  23. Wang, Z. Z., Suski, J. & Collard, D. Piezoresistive simulation in MOSFETs. Sens. Actuat. A 37–38, 357–364 (1993).

    Article  Google Scholar 

  24. Zhang, P. et al. Electronic transport in nanometer-scale silicon-on-insulator membranes. Nature 439, 703–706 (2006).

    Article  Google Scholar 

  25. Derrien, J. & Ringeisen, F. Band bending variation of the Si(111) surface during its thermal oxidation. Solid State Commun. 50, 627–628 (1984).

    Article  Google Scholar 

  26. Watanabe, D., En, A., Nakamura, S., Suhara, M. & Okumura, T. Anomalously large band-bending for HF-treated p-Si surfaces. Appl. Surf. Sci. 216, 24–29 (2003).

    Article  Google Scholar 

  27. Lüth, H. Solid Surfaces, Interfaces and Thin Films 343–348 (Springer, Berlin, 2001).

    Book  Google Scholar 

  28. Khang, D. Y., Jiang, H., Huang, Y. & Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006).

    Article  Google Scholar 

  29. Kuykendall, T. et al. Crystallographic alignment of high-density gallium nitride nanowire arrays. Nature Mater. 3, 524–528 (2004).

    Article  Google Scholar 

  30. Crandall, S. H. et al. An Introduction to the Mechanics of Solids 416–432 (McGraw-Hill, New York, 1978).

    Google Scholar 

Download references

Acknowledgements

We thank A. San Paulo and Rong Fan for technical assistance, and R. Maboudian and R. T. Howe for helpful discussions. This work was supported by the U.S. National Science Foundation and MARCO MSD Center. We thank the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, for the use of their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peidong Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information, figures S1 and S2, table S1 (PDF 612 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, R., Yang, P. Giant piezoresistance effect in silicon nanowires. Nature Nanotech 1, 42–46 (2006). https://doi.org/10.1038/nnano.2006.53

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.53

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing