Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A high-throughput approach for measuring temporal changes in the interactome

Abstract

Interactomes are often measured using affinity purification–mass spectrometry (AP-MS) or yeast two-hybrid approaches, but these methods do not provide stoichiometric or temporal information. We combine quantitative proteomics and size-exclusion chromatography to map 291 coeluting complexes. This method allows mapping of an interactome to the same depth and accuracy as AP-MS with less work and without overexpression or tagging. The use of triplex labeling enables monitoring of interactome rearrangements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of spatiotemporal changes in the interactome after EGF stimulation.
Figure 2: Evaluation of the PCP-SILAC approach to identify protein-protein interactions.
Figure 3: Determination of stoichiometry and the interactome response to EGF stimulation.

Similar content being viewed by others

References

  1. Blume-Jensen, P. & Hunter, T. Nature 411, 355–365 (2001).

    Article  CAS  Google Scholar 

  2. Gavin, A.-C. et al. Nature 440, 631–636 (2006).

    Article  CAS  Google Scholar 

  3. Uetz, P. et al. Nature 403, 623–627 (2000).

    Article  CAS  Google Scholar 

  4. Werner, J.N. et al. Proc. Natl. Acad. Sci. USA 106, 7858–7863 (2009).

    Article  CAS  Google Scholar 

  5. Andersen, J.S. et al. Nature 426, 570–574 (2003).

    Article  CAS  Google Scholar 

  6. Foster, L.J. et al. Cell 125, 187–199 (2006).

    Article  CAS  Google Scholar 

  7. Olinares, P.D., Ponnala, L. & van Wijk, K.J. Mol. Cell. Proteomics 9, 1594–1615 (2010).

    Article  CAS  Google Scholar 

  8. Wang, X. & Huang, L. Mol. Cell. Proteomics 7, 46–57 (2008).

    Article  Google Scholar 

  9. Jin, J. et al. Curr. Biol. 14, 1436–1450 (2004).

    Article  CAS  Google Scholar 

  10. Tai, H.-C., Besche, H., Goldberg, A.L. & Schuman, E.M. Front. Mol. Neurosci. 3 (2010); doi:10.3389/fnmol.2010.00012.

  11. Vuori, K. & Ruoslahti, E. Science 266, 1576–1578 (1994).

    Article  CAS  Google Scholar 

  12. Bache, K.G., Raiborg, C., Mehlum, A. & Stenmark, H. J. Biol. Chem. 278, 12513–12521 (2003).

    Article  CAS  Google Scholar 

  13. Olsen, J.V. et al. Cell 127, 635–648 (2006).

    Article  CAS  Google Scholar 

  14. Blagoev, B., Ong, S.-E., Kratchmarova, I. & Mann, M. Nat. Biotechnol. 22, 1139–1145 (2004).

    Article  CAS  Google Scholar 

  15. Argenzio, E. et al. Mol. Syst. Biol. 7, 462 (2011).

    Article  Google Scholar 

  16. Ewing, R.M. et al. Mol. Syst. Biol. 3, 89 (2007).

    Article  Google Scholar 

  17. Sancak, Y. et al. Mol. Cell 25, 903–915 (2007).

    Article  CAS  Google Scholar 

  18. Rogers, L.D. & Foster, L.J. Proc. Natl. Acad. Sci. USA 104, 18520–18525 (2007).

    Article  CAS  Google Scholar 

  19. Rappsilber, J., Ishihama, Y. & Mann, M. Anal. Chem. 75, 663–670 (2003).

    Article  CAS  Google Scholar 

  20. Cox, J. & Mann, M. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  Google Scholar 

  21. Ruepp, A. et al. Nucleic Acids Res. 38, D497–D501 (2010).

    Article  CAS  Google Scholar 

  22. Davis, J. & Goadrich, M. in Proc. 23rd Int. Conf. Mach. Learn. 233–240 (ACM, 2006).

  23. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V. & Mann, M. Nat. Protoc. 1, 2856–2860 (2006).

    Article  CAS  Google Scholar 

  24. Aranda, B. et al. Nucleic Acids Res. 38, D525–D531 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Foster group for discussions and advice. This work was supported by a grant from the Canadian Institutes for Health Research to L.J.F. (MOP-77688). L.J.F. is supported by the Canada Research Chairs program and A.R.K. is supported by the Danish Agency for Science Technology and Innovation. Mass spectrometry infrastructure used in this work was supported by the Canada Foundation for Innovation, British Columbia Knowledge Development Fund and BC Proteomics Network.

Author information

Authors and Affiliations

Authors

Contributions

A.R.K. conceived of and performed the experiments; A.R.K., J.G. and L.J.F. analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Leonard J Foster.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 837 kb)

Supplementary Table 1a

Raw chromatograms for proteins identified in the three biological replicates (XLS 2363 kb)

Supplementary Table 1b (XLS 2660 kb)

Supplementary Table 1c (XLS 6851 kb)

Supplementary Table 2

Limits applied for the three different biological replicates (XLS 19 kb)

Supplementary Table 3

Binary interactions identified (XLS 2762 kb)

Supplementary Table 4

Protein complexes identified (XLS 206 kb)

Supplementary Table 5

Proteins that did change elution time following addition of antibodies against 14-3-3A (XLS 19 kb)

Supplementary Table 6

Proteins identified to have temporal changes after EGF stimulation (XLS 45 kb)

Supplementary Table 7

Proteins that changed elution time following addition of antibody against HRS (XLS 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristensen, A., Gsponer, J. & Foster, L. A high-throughput approach for measuring temporal changes in the interactome. Nat Methods 9, 907–909 (2012). https://doi.org/10.1038/nmeth.2131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing