Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Facile backbone structure determination of human membrane proteins by NMR spectroscopy

Abstract

Although nearly half of today's major pharmaceutical drugs target human integral membrane proteins (hIMPs), only 30 hIMP structures are currently available in the Protein Data Bank, largely owing to inefficiencies in protein production. Here we describe a strategy for the rapid structure determination of hIMPs, using solution NMR spectroscopy with systematically labeled proteins produced via cell-free expression. We report new backbone structures of six hIMPs, solved in only 18 months from 15 initial targets. Application of our protocols to an additional 135 hIMPs with molecular weight <30 kDa yielded 38 hIMPs suitable for structural characterization by solution NMR spectroscopy without additional optimization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Workflow for screening and evaluation of 15 selected hIMPs for structural studies.
Figure 2: NMR spectral quality and N-H backbone assignment for six hIMPs.
Figure 3: Solution NMR spectroscopy structures and long-distance constraints used in structure calculations.
Figure 4: Solution NMR spectroscopy structures of six hIMPs.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Klammt, C. et al. High level cell-free expression and specific labeling of integral membrane proteins. Eur. J. Biochem. 271, 568–580 (2004).

    Article  CAS  Google Scholar 

  2. Wuu, J.J. & Swartz, J.R. High yield cell-free production of integral membrane proteins without refolding or detergents. Biochim. Biophys. Acta 1778, 1237–1250 (2008).

    Article  CAS  Google Scholar 

  3. Katzen, F. et al. Insertion of membrane proteins into discoidal membranes using a cell-free protein expression approach. J. Proteome Res. 7, 3535–3542 (2008).

    Article  CAS  Google Scholar 

  4. Kalmbach, R. et al. Functional cell-free synthesis of a seven helix membrane protein: in situ insertion of bacteriorhodopsin into liposomes. J. Mol. Biol. 371, 639–648 (2007).

    Article  CAS  Google Scholar 

  5. Klammt, C. et al. Evaluation of detergents for the soluble expression of alpha-helical and beta-barrel-type integral membrane proteins by a preparative scale individual cell-free expression system. FEBS J. 272, 6024–6038 (2005).

    Article  CAS  Google Scholar 

  6. Maslennikov, I. et al. Membrane domain structures of three classes of histidine kinase receptors by cell-free expression and rapid NMR analysis. Proc. Natl. Acad. Sci. USA 107, 10902–10907 (2010).

    Article  CAS  Google Scholar 

  7. Klammt, C. et al. Polymer-based cell-free expression of ligand-binding family B G-protein coupled receptors without detergents. Protein Sci. 20, 1030–1041 (2011).

    Article  CAS  Google Scholar 

  8. Junge, F. et al. Modulation of G-protein coupled receptor sample quality by modified cell-free expression protocols: a case study of the human endothelin A receptor. J. Struct. Biol. 172, 94–106 (2010).

    Article  CAS  Google Scholar 

  9. Keller, T. et al. Cell free expression and functional reconstitution of eukaryotic drug transporters. Biochemistry 47, 4552–4564 (2008).

    Article  CAS  Google Scholar 

  10. Klammt, C. et al. Functional analysis of cell-free-produced human endothelin B receptor reveals transmembrane segment 1 as an essential area for ET-1 binding and homodimer formation. FEBS J. 274, 3257–3269 (2007).

    Article  CAS  Google Scholar 

  11. Ishihara, G. et al. Expression of G protein coupled receptors in a cell-free translational system using detergents and thioredoxin-fusion vectors. Protein Expr. Purif. 41, 27–37 (2005).

    Article  CAS  Google Scholar 

  12. Pervushin, K., Riek, R., Wider, G. & Wuthrich, K. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12366–12371 (1997).

    Article  CAS  Google Scholar 

  13. Gautier, A. et al. Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy. Nat. Struct. Mol. Biol. 17, 768–774 (2010).

    Article  CAS  Google Scholar 

  14. Van Horn, W.D. et al. Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase. Science 324, 1726–1729 (2009).

    Article  CAS  Google Scholar 

  15. Wang, J., Pielak, R.M., McClintock, M.A. & Chou, J.J. Solution structure and functional analysis of the influenza B proton channel. Nat. Struct. Mol. Biol. 16, 1267–1271 (2009).

    Article  CAS  Google Scholar 

  16. Hiller, S. et al. Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321, 1206–1210 (2008).

    Article  CAS  Google Scholar 

  17. Bayrhuber, M. et al. Structure of the human voltage-dependent anion channel. Proc. Natl. Acad. Sci. USA 105, 15370–15375 (2008).

    Article  CAS  Google Scholar 

  18. Page, R.C. et al. Backbone structure of a small helical integral membrane protein: A unique structural characterization. Protein Sci. 18, 134–146 (2009).

    CAS  PubMed  Google Scholar 

  19. Liang, B., Bushweller, J.H. & Tamm, L.K. Site-directed parallel spin-labeling and paramagnetic relaxation enhancement in structure determination of membrane proteins by solution NMR spectroscopy. J. Am. Chem. Soc. 128, 4389–4397 (2006).

    Article  CAS  Google Scholar 

  20. Iwahara, J., Schwieters, C.D. & Clore, G.M. Ensemble approach for NMR structure refinement against (1)H paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule. J. Am. Chem. Soc. 126, 5879–5896 (2004).

    Article  CAS  Google Scholar 

  21. Battiste, J.L. & Wagner, G. Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry 39, 5355–5365 (2000).

    Article  CAS  Google Scholar 

  22. Kay, L.E. Solution NMR spectroscopy of supra-molecular systems, why bother? A methyl-TROSY view. J. Magn. Reson. 210, 159–170 (2011).

    Article  CAS  Google Scholar 

  23. Rual, J.F. et al. Human ORFeome version 1.1: a platform for reverse proteomics. Genome Res. 14, 2128–2135 (2004).

    Article  CAS  Google Scholar 

  24. Sobhanifar, S. et al. Structural investigation of the C-terminal catalytic fragment of presenilin 1. Proc. Natl. Acad. Sci. USA 107, 9644–9649 (2010).

    Article  CAS  Google Scholar 

  25. Zhou, Y. et al. NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formation. Mol. Cell 31, 896–908 (2008).

    Article  CAS  Google Scholar 

  26. Bedo, G. et al. Characterization of hypoxia induced gene 1: expression during rat central nervous system maturation and evidence of antisense RNA expression. Int. J. Dev. Biol. 49, 431–436 (2005).

    Article  CAS  Google Scholar 

  27. Kasper, L.H. & Brindle, P.K. Mammalian gene expression program resiliency: the roles of multiple coactivator mechanisms in hypoxia-responsive transcription. Cell Cycle 5, 142–146 (2006).

    Article  CAS  Google Scholar 

  28. Jiang, Z., Gui, S. & Zhang, Y. Analysis of differential gene expression by fiber-optic BeadArray and pathway in prolactinomas. Endocrine 38, 360–368 (2010).

    Article  CAS  Google Scholar 

  29. Cheriyath, V., Leaman, D.W. & Borden, E.C. Emerging roles of FAM14 family members (G1P3/ISG 6–16 and ISG12/IFI27) in innate immunity and cancer. J. Interferon Cytokine Res. 31, 173–181 (2011).

    Article  CAS  Google Scholar 

  30. Nilsson, R. et al. Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis. Cell Metab. 10, 119–130 (2009).

    Article  CAS  Google Scholar 

  31. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  32. Zheng, L., Baumann, U. & Reymond, J.L. An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res. 32, e115 (2004).

    Article  Google Scholar 

  33. Shi, C. et al. Purification and characterization of a recombinant G-protein-coupled receptor, Saccharomyces cerevisiae Ste2p, transiently expressed in HEK293 EBNA1 cells. Biochemistry 44, 15705–15714 (2005).

    Article  CAS  Google Scholar 

  34. Klammt, C., Schwarz, D., Dotsch, V. & Bernhard, F. Cell-free production of integral membrane proteins on a preparative scale. Methods Mol. Biol. 375, 57–78 (2007).

    CAS  PubMed  Google Scholar 

  35. Ichetovkin, I.E., Abramochkin, G. & Shrader, T.E. Substrate recognition by the leucyl/phenylalanyl-tRNA-protein transferase. Conservation within the enzyme family and localization to the trypsin-resistant domain. J. Biol. Chem. 272, 33009–33014 (1997).

    Article  CAS  Google Scholar 

  36. Savage, D.F. et al. Cell-free complements in vivo expression of the E. coli membrane proteome. Protein Sci. 16, 966–976 (2007).

    Article  CAS  Google Scholar 

  37. Riek, R. et al. Solution NMR techniques for large molecular and supramolecular structures. J. Am. Chem. Soc. 124, 12144–12153 (2002).

    Article  CAS  Google Scholar 

  38. Salzmann, M. et al. TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc. Natl. Acad. Sci. USA 95, 13585–13590 (1998).

    Article  CAS  Google Scholar 

  39. Salzmann, M. et al. TROSY-type triple-resonance experiments for sequential NMR assignments of large proteins. J. Am. Chem. Soc. 121, 844–848 (1999).

    Article  CAS  Google Scholar 

  40. Diercks, T., Coles, M. & Kessler, H. An efficient strategy for assignment of cross-peaks in 3D heteronuclear NOESY experiments. J. Biomol. NMR 15, 177–180 (1999).

    Article  CAS  Google Scholar 

  41. Hilty, C., Wider, G., Fernandez, C. & Wuthrich, K. Membrane protein-lipid interactions in mixed micelles studied by NMR spectroscopy with the use of paramagnetic reagents. ChemBioChem 5, 467–473 (2004).

    Article  CAS  Google Scholar 

  42. Yabuki, T. et al. Dual amino acid-selective and site-directed stable-isotope labeling of the human c-Ha-Ras protein by cell-free synthesis. J. Biomol. NMR 11, 295–306 (1998).

    Article  CAS  Google Scholar 

  43. Kainosho, M. & Tsuji, T. Assignment of the three methionyl carbonyl carbon resonances in Streptomyces subtilisin inhibitor by a carbon-13 and nitrogen-15 double-labeling technique. A new strategy for structural studies of proteins in solution. Biochemistry 21, 6273–6279 (1982).

    Article  CAS  Google Scholar 

  44. Van Horn, W.D., Beel, A.J., Kang, C. & Sanders, C.R. The impact of window functions on NMR-based paramagnetic relaxation enhancement measurements in membrane proteins. Biochim. Biophys. Acta 1798, 140–149 (2010).

    Article  CAS  Google Scholar 

  45. Roosild, T.P. et al. NMR structure of Mistic, a membrane-integrating protein for membrane protein expression. Science 307, 1317–1321 (2005).

    Article  CAS  Google Scholar 

  46. Kroncke, B.M., Horanyi, P.S. & Columbus, L. Structural origins of nitroxide side chain dynamics on membrane protein alpha-helical sites. Biochemistry 49, 10045–10060 (2010).

    Article  CAS  Google Scholar 

  47. Langen, R., Oh, K.J., Cascio, D. & Hubbell, W.L. Crystal structures of spin labeled T4 lysozyme mutants: implications for the interpretation of EPR spectra in terms of structure. Biochemistry 39, 8396–8405 (2000).

    Article  CAS  Google Scholar 

  48. Clore, G.M., Robien, M.A. & Gronenborn, A.M. Exploring the limits of precision and accuracy of protein structures determined by nuclear magnetic resonance spectroscopy. J. Mol. Biol. 231, 82–102 (1993).

    Article  CAS  Google Scholar 

  49. Lubingbuhl, P., Szyperski, T. & Wuthrich, K. Statistical basis for the use of 13Ca chemical shifts in protein structure determination. J. Magn. Reson. B. 109, 229–233 (1995).

    Article  Google Scholar 

  50. Guntert, P. Automated NMR structure calculation with CYANA. Methods Mol. Biol. 278, 353–378 (2004).

    CAS  PubMed  Google Scholar 

  51. Dalton, J.A., Michalopoulos, I. & Westhead, D.R. Calculation of helix packing angles in protein structures. Bioinformatics 19, 1298–1299 (2003).

    Article  CAS  Google Scholar 

  52. Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  53. Brewer, G.J., Torricelli, J.R., Evege, E.K. & Price, P.J. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567–576 (1993).

    Article  CAS  Google Scholar 

  54. Pieper, U. et al. ModBase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res. 39, D465–D474 (2011).

    Article  CAS  Google Scholar 

  55. Bairoch, A. et al. The Universal Protein Resource (UniProt). Nucleic Acids Res. 33, D154–D159 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Louie for comments in preparation of the manuscript, A.S. Arseniev for suggestions on the spin-labeling procedure and S. Maslennikov for writing the atomDistancer program. C.K. thanks the Pioneer Foundation for a Pioneer Fund Postdoctoral Scholar Award. This work has been partly supported by US National Institutes of Health (S.C.: GM098630, GM095623; A.S. and U.P.: GM094662, GM094625 FDP, and GM54762), Incheon Free Economic Zone and the World Class University Program (Korea).

Author information

Authors and Affiliations

Authors

Contributions

C.K., I.M., W.K., R.R. and S.C. designed experiments, C.K., E.J.C.C., L.E. and J.H.J.K. cloned hIMP targets, performed cell-free expression, evaluated protein expression levels and detergent solubilization; C.K. and E.J.C.C. created single cysteine mutants for PRE experiments, prepared isotopically labeled NMR spectroscopy samples and samples for PRE measurements. C.K. and I.M. recorded NMR spectra and evaluated NMR spectral quality of tested hIMPs; C.K., I.M., M.B., C.E., N.V., E.J.C.C. and K.B. collected and assigned NMR spectra and analyzed data; I.M., M.B. and C.E. calculated the structures. C.K., E.J.C.C., B.B. and P.A.S. analyzed HIGD1A antibody specificity by western blot and by immunostaining; U.P. and A.S. calculated modeling leverage based on hIMP structures; C.K., I.M., W.K. and S.C. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Senyon Choe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Tables 1–6 (PDF 14973 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klammt, C., Maslennikov, I., Bayrhuber, M. et al. Facile backbone structure determination of human membrane proteins by NMR spectroscopy. Nat Methods 9, 834–839 (2012). https://doi.org/10.1038/nmeth.2033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2033

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research