Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biological imaging software tools

A Corrigendum to this article was published on 27 September 2012

A Corrigendum to this article was published on 27 September 2012

This article has been updated

Abstract

Few technologies are more widespread in modern biological laboratories than imaging. Recent advances in optical technologies and instrumentation are providing hitherto unimagined capabilities. Almost all these advances have required the development of software to enable the acquisition, management, analysis and visualization of the imaging data. We review each computational step that biologists encounter when dealing with digital images, the inherent challenges and the overall status of available software for bioimage informatics, focusing on open-source options.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of imaging workflow.
Figure 2
Figure 3
Figure 4
Figure 5: Screenshots illustrating the image-analysis steps starting from a multichannel, multiphoton time-lapse movie culminating in a bioinformatics profiling of the extracted spatiotemporal data, using the FARSIGHT toolkit.
Figure 6
Figure 7: Machine learning.
Figure 8: Workflow systems.

Similar content being viewed by others

Change history

  • 20 July 2012

    In the version of this article initially published, Nico Stuurman's last name was incorrect. The error has been corrected in the HTML and PDF versions of the article.

  • 29 August 2012

    In the version of this article initially published, the disclaimer was omitted. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Peng, H. Bioimage informatics: a new area of engineering biology. Bioinformatics 24, 1827–1836 (2008).

    Article  CAS  Google Scholar 

  2. Gustafsson, M.G. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).

    Article  CAS  Google Scholar 

  3. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    Article  CAS  Google Scholar 

  4. Hess, S.T., Girirajan, T.P. & Mason, M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    Article  CAS  Google Scholar 

  5. Jones, S.A., Shim, S.H., He, J. & Zhuang, X. Fast, three-dimensional super-resolution imaging of live cells. Nat. Methods 8, 499–508 (2011).

    Article  CAS  Google Scholar 

  6. Planchon, T.A. et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8, 417–423 (2011).

    Article  CAS  Google Scholar 

  7. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using μManager. Curr. Protoc. Mol. Biol. 92, 14.20.11–14.20.17 (2010).

    Google Scholar 

  8. Lin, H.P., Vincenz, C., Eliceiri, K.W., Kerppola, T.K. & Ogle, B.M. Bimolecular fluorescence complementation analysis of eukaryotic fusion products. Biol. Cell 102, 525–537 (2010).

    Article  CAS  Google Scholar 

  9. Pologruto, T.A., Sabatini, B.L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003).

    Article  Google Scholar 

  10. Conrad, C. et al. Micropilot: automation of fluorescence microscopy-based imaging for systems biology. Nat. Methods 8, 246–249 (2011).

    Article  CAS  Google Scholar 

  11. Allan, C. et al. OMERO: flexible, model-driven data management for experimental biology. Nat. Methods 9, 245–253 (2012).

    Article  CAS  Google Scholar 

  12. Kvilekval, K., Fedorov, D., Obara, B., Singh, A. & Manjunath, B.S. Bisque: a platform for bioimage analysis and management. Bioinformatics 26, 544–552 (2010).

    Article  CAS  Google Scholar 

  13. Wu, L., Faloutsos, C., Sycara, K.P. & Payne, T.R. Feedback adaptive loop for content-based retrieval. in Proceedings of the 26th International Conference on Very Large Data Bases (Morgan Kaufmann Publishers Inc., 2000).

  14. Goff, S.A. et al. The iPlant Collaborative: cyberinfrastructure for plant biology. Frontiers in Plant Science 2, 34 (2011).

    Article  Google Scholar 

  15. Glory, E. & Murphy, R.F. Automated subcellular location determination and high-throughput microscopy. Dev. Cell 12, 7–16 (2007).

    Article  CAS  Google Scholar 

  16. Ljosa, V. & Carpenter, A.E. Introduction to the quantitative analysis of two-dimensional fluorescence microscopy images for cell-based screening. PLoS Comput. Biol. 5, e1000603 (2009).

    Article  Google Scholar 

  17. Lakowicz, J.R. Principals of Fluorescence Spectroscopy. (Academic Press, New York, 1999).

  18. Kankaanpää, P. et al. BioImageXD: an open, general-purpose and high-throughput image-processing platform. Nat. Methods 9, 683–689 (2012).

    Article  Google Scholar 

  19. de Chaumont, F. et al. Icy: an open bioimage informatics platform for extended reproducible research. Nat. Methods 9, 690–696 (2012).

    Article  CAS  Google Scholar 

  20. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  Google Scholar 

  21. Peng, H., Ruan, Z., Long, F., Simpson, J.H. & Myers, E.W. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat. Biotechnol. 28, 348–353 (2010).

    Article  CAS  Google Scholar 

  22. Carpenter, A.E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).

    Article  Google Scholar 

  23. Fiala, J.C. Reconstruct: a free editor for serial section microscopy. J. Microsc. 218, 52–61 (2005).

    Article  CAS  Google Scholar 

  24. Feng, D. et al. Stepping into the third dimension. J. Neurosci. 27, 12757–12760 (2007).

    Article  CAS  Google Scholar 

  25. Rosset, A., Spadola, L., Ratib, O. & Osiri, X. An open-source software for navigating in multidimensional DICOM images. J. Digit. Imaging 17, 205–216 (2004).

    Article  Google Scholar 

  26. Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  Google Scholar 

  27. Collins, T.J. ImageJ for microscopy. Biotechniques 43, 25–30 (2007).

    Article  Google Scholar 

  28. Abramoff, M., Magalhaes, P. & Ram, S. Image processing with ImageJ. Biophotonics International 11, 36–42 (2004).

    Google Scholar 

  29. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  Google Scholar 

  30. Kamentsky, L. et al. Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics 27, 1179–1180 (2011).

    Article  CAS  Google Scholar 

  31. Preibisch, S., Saalfeld, S., Schindelin, J. & Tomancak, P. Software for bead-based registration of selective plane illumination microscopy data. Nat. Methods 7, 418–419 (2010).

    Article  CAS  Google Scholar 

  32. Tsai, C.L. et al. Robust, globally consistent and fully automatic multi-image registration and montage synthesis for 3-D multi-channel images. J. Microsc. 243, 154–171 (2011).

    Article  Google Scholar 

  33. Preibisch, S., Saalfeld, S. & Tomančák, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009).

    Article  CAS  Google Scholar 

  34. Saalfeld, S., Fetter, R., Cardona, R. & Tomancak, P. Elastic volume reconstruction from series of ultrathin microscopy sections. Nat. Methods 9, 717–720 (2012).

    Article  CAS  Google Scholar 

  35. Walter, T. et al. Visualization of image data from cells to organisms. Nat. Methods 7, S26–S41 (2010).

    Article  CAS  Google Scholar 

  36. Saalfeld, S., Cardona, A., Hartenstein, V. & Tomanččák, P. CATMAID: collaborative annotation toolkit for massive amounts of image data. Bioinformatics 25, 1984–1986 (2009).

    Article  CAS  Google Scholar 

  37. Qu, L. et al. Simultaneous recognition and segmentation of cells: application in C. elegans. Bioinformatics 27, 2895–2902 (2011).

    Article  CAS  Google Scholar 

  38. Long, F., Peng, H., Liu, X., Kim, S.K. & Myers, E. A 3D digital atlas of C. elegans and its application to single-cell analyses. Nat. Methods 6, 667–672 (2009).

    Article  CAS  Google Scholar 

  39. Pau, G., Fuchs, F., Sklyar, O., Boutros, M. & Huber, W. EBImage–an R package for image processing with applications to cellular phenotypes. Bioinformatics 26, 979–981 (2010).

    Article  CAS  Google Scholar 

  40. Shamir, L., Delaney, J.D., Orlov, N., Eckley, D.M. & Goldberg, I.G. Pattern recognition software and techniques for biological image analysis. PLoS Comput. Biol. 6, e1000974 (2010).

    Article  Google Scholar 

  41. Murphy, R.F. An active role for machine learning in drug development. Nat. Chem. Biol. 7, 327–330 (2011).

    Article  CAS  Google Scholar 

  42. Murphy, R.F., Velliste, M. & Porreca, G. Robust numerical features for description and classification of subcellular location patterns in fluorescence microscope images. J. VLSI Signal Process. 35, 311–321 (2003).

    Article  Google Scholar 

  43. Nattkemper, T.W., Twellmann, T., Ritter, H. & Schubert, W. Human vs machine: evaluation of fluorescence micrographs. Comput. Biol. Med. 33, 31–43 (2003).

    Article  Google Scholar 

  44. Johnston, J., Iser, W.B., Chow, D.K., Goldberg, I.G. & Wolkow, C.A. Quantitative image analysis reveals distinct structural transitions during aging in Caenorhabditis elegans tissues. PLoS ONE 3, e2821 (2008).

    Article  Google Scholar 

  45. Huang, K. & Murphy, R.F. From quantitative microscopy to automated image understanding. J. Biomed. Opt. 9, 893–912 (2004).

    Article  Google Scholar 

  46. Shamir, L. et al. Wndchrm – an open source utility for biological image analysis. Source Code Biol. Med. 3, 13 (2008).

    Article  Google Scholar 

  47. Loo, L.H., Wu, L.F. & Altschuler, S.J. Image-based multivariate profiling of drug responses from single cells. Nat. Methods 4, 445–453 (2007).

    CAS  Google Scholar 

  48. Perlman, Z.E. et al. Multidimensional drug profiling by automated microscopy. Science 306, 1194–1198 (2004).

    Article  CAS  Google Scholar 

  49. Chen, X. & Murphy, R.F. Objective clustering of proteins based on subcellular location patterns. J. Biomed. Biotechnol. 2005, 87–95 (2005).

    Article  Google Scholar 

  50. Jones, T.R. et al. Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning. Proc. Natl. Acad. Sci. USA 106, 1826–1831 (2009).

    Article  CAS  Google Scholar 

  51. Jackson, C., Glory-Afshar, E., Murphy, R.F. & Kovacevic, J. Model building and intelligent acquisition with application to protein subcellular location classification. Bioinformatics 27, 1854–1859 (2011).

    Article  CAS  Google Scholar 

  52. Peng, T. et al. Determining the distribution of probes between different subcellular locations through automated unmixing of subcellular patterns. Proc. Natl. Acad. Sci. USA 107, 2944–2949 (2010).

    Article  CAS  Google Scholar 

  53. Coelho, L.P., Peng, T. & Murphy, R.F. Quantifying the distribution of probes between subcellular locations using unsupervised pattern unmixing. Bioinformatics 26, i7–i12 (2010).

    Article  CAS  Google Scholar 

  54. Carpenter, A.E., Kamentsky, L. & Eliceiri, K.W. A call for bioimaging software usability. Nat. Methods 9, 666–670 (2012).

    Article  CAS  Google Scholar 

  55. Cardona, A. & Tomancak, P. Current challenges in open-source bioimage informatics. Nat. Methods 9, 661–665 (2012).

    Article  CAS  Google Scholar 

  56. Nielsen, M. Reinventing Discovery: The New Era of Networked Science. (Princeton University Press, 2011).

  57. Linkert, M. et al. Metadata matters: access to image data in the real world. J. Cell Biol. 189, 777–782 (2010).

    Article  CAS  Google Scholar 

  58. Larson, S.D. & Martone, M.E. Ontologies for neuroscience: what are they and what are they good for? Front. Neurosci. 3, 60–67 (2009).

    Article  Google Scholar 

  59. Plant, A.L., Elliott, J.T. & Bhat, T.N. New concepts for building vocabulary for cell image ontologies. BMC Bioinformatics 12, 487 (2011).

    Article  Google Scholar 

  60. Swedlow, J.R. Finding an image in a haystack: the case for public image repositories. Nat. Cell Biol. 13, 183 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge our respective funding sources and members of our laboratories for feedback and useful comments, in particular A. Merouane and A. Narayanswamy of the Roysam lab for their assistance in preparing figures, and L. Kamentsky and M. Bray of the Carpenter lab for useful input and edits on the manuscript. A.E.C. and K.W.E. were supported by US National Institutes of Health grants R01 GM089652 (to A.E.C.) and RC2 GM092519 (to K.W.E.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kevin W Eliceiri or Anne E Carpenter.

Ethics declarations

Competing interests

J.R.S. is affiliated with Glencoe Software, Inc., a company that contributes to OMERO. M.R.B. is co-founder and co-owner of KNIME.com AG, a company that contributes to the development of the KNIME platform.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eliceiri, K., Berthold, M., Goldberg, I. et al. Biological imaging software tools. Nat Methods 9, 697–710 (2012). https://doi.org/10.1038/nmeth.2084

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2084

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics