Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rapid, accurate particle tracking by calculation of radial symmetry centers

This article has been updated

Abstract

I introduce an algorithm for subpixel localization of imaged objects based on an analytic, non-iterative calculation of the best-fit radial symmetry center. This approach yields tracking accuracies that are near theoretical limits, similarly to Gaussian fitting, but with orders-of-magnitude faster execution time, lower sensitivity to nearby particles and applicability to any radially symmetric intensity distribution. I demonstrate the method with several types of data, including super-resolution microscopy images.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of particle tracking based on radial symmetry.
Figure 2: Characterizations and applications of radial symmetry–based particle localization.

Similar content being viewed by others

Change history

  • 21 June 2012

    In the version of this article initially published online, the accepted date was incorrect. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Park, H., Toprak, E. & Selvin, P.R. Q. Rev. Biophys. 40, 87–111 (2007).

    Article  CAS  Google Scholar 

  2. Brandenburg, B. & Zhuang, X. Nat. Rev. Microbiol. 5, 197–208 (2007).

    Article  CAS  Google Scholar 

  3. Crocker, J.C. & Hoffman, B.D. Methods Cell Biol. 83, 141–178 (2007).

    Article  CAS  Google Scholar 

  4. Huang, B., Babcock, H. & Zhuang, X. Cell 143, 1047–1058 (2010).

    Article  CAS  Google Scholar 

  5. Manley, S., Gillette, J.M. & Lippincott-Schwartz, J. Methods Enzymol. 475, 109–120 (2010).

    Article  CAS  Google Scholar 

  6. Crocker, J.C. & Grier, D.G. J. Colloid Interface Sci. 179, 298–310 (1996).

    Article  CAS  Google Scholar 

  7. Rogers, S.S., Waigh, T.A., Zhao, X. & Lu, J.R. Phys. Biol. 4, 220–227 (2007).

    Article  CAS  Google Scholar 

  8. Thompson, R.E., Larson, D.R. & Webb, W.W. Biophys. J. 82, 2775–2783 (2002).

    Article  CAS  Google Scholar 

  9. Cheezum, M.K., Walker, W.F. & Guilford, W.H. Biophys. J. 81, 2378–2388 (2001).

    Article  CAS  Google Scholar 

  10. Abraham, A.V., Ram, S., Chao, J., Ward, E.S. & Ober, R.J. Opt. Express 17, 23352–23373 (2009).

    Article  CAS  Google Scholar 

  11. Loy, G. & Zelinsky, A. IEEE Trans. Pattern Anal. Mach. Intell. 25, 959–973 (2003).

    Article  Google Scholar 

  12. Cheong, F.C. et al. Opt. Express 17, 13071–13079 (2009).

    Article  CAS  Google Scholar 

  13. Anthony, S.M. & Granick, S. Langmuir 25, 8152–8160 (2009).

    Article  CAS  Google Scholar 

  14. Andersson, S. Opt. Express 16, 18714–18724 (2008).

    Article  CAS  Google Scholar 

  15. Harland, C.W., Bradley, M.J. & Parthasarathy, R. Proc. Natl. Acad. Sci. USA 107, 19146–19150; retracted 108, 14705 (2010).

    Article  CAS  Google Scholar 

  16. Hedde, P.N., Fuchs, J., Oswald, F., Wiedenmann, J. & Nienhaus, G.U. Nat. Methods 6, 689–690 (2009).

    Article  CAS  Google Scholar 

  17. Greenfield, D. et al. PLoS Biol. 7, e1000137 (2009).

    Article  Google Scholar 

  18. Simonson, P.D. et al. Biophys. J. 99, L81–L83 (2010).

    Article  CAS  Google Scholar 

  19. Dinsmore, A.D., Weeks, E.R., Prasad, V., Levitt, A.C. & Weitz, D.A. Appl. Opt. 40, 4152–4159 (2001).

    Article  CAS  Google Scholar 

  20. Lu, P.J. et al. Nature 453, 499–503 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank H. Deberg, W. Draper, G. Hunter, J. Liphardt, P. Lu, P. Selvin, M. Tjioe, E. Weeks and D. Weitz for sharing and discussing experimental data, and E. Corwin and D. Grier for comments and discussions. This work is supported by the US National Science Foundation (award numbers 0746038 and 1006171).

Author information

Authors and Affiliations

Authors

Contributions

R.P. is the sole contributor to this work.

Corresponding author

Correspondence to Raghuveer Parthasarathy.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1–7, Supplementary Note and Supplementary Results (PDF 1553 kb)

Supplementary Table, Software, etc.

Supplementary Software (ZIP 135 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parthasarathy, R. Rapid, accurate particle tracking by calculation of radial symmetry centers. Nat Methods 9, 724–726 (2012). https://doi.org/10.1038/nmeth.2071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2071

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing