Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Membrane-protein binding measured with solution-phase plasmonic nanocube sensors

Abstract

We describe a solution-phase sensor of lipid-protein binding based on localized surface plasmon resonance (LSPR) of silver nanocubes. When silica-coated nanocubes are mixed in a suspension of lipid vesicles, supported membranes spontaneously assemble on their surfaces. Using a standard laboratory spectrophotometer, we calibrated the LSPR peak shift due to protein binding to the membrane surface and then characterized the lipid-binding specificity of a pleckstrin homology domain protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physical properties of Ag@SiO2 core-shell nanocubes.
Figure 2: Calibration of the nanocube assay.

Similar content being viewed by others

References

  1. Groves, J.T. & Kuriyan, J. Nat. Struct. Mol. Biol. 17, 659–665 (2010).

    Article  CAS  Google Scholar 

  2. Baksh, M.M., Kussrow, A.K., Mileni, M., Finn, M.G. & Bornhop, D.J. Nat. Biotechnol. 29, 357–360 (2011).

    Article  CAS  Google Scholar 

  3. Baksh, M.M., Jaros, M. & Groves, J.T. Nature 427, 139–141 (2004).

    Article  CAS  Google Scholar 

  4. Zheng, G., Patolsky, F., Cui, Y., Wang, W.U. & Lieber, C.M. Nat. Biotechnol. 23, 1294–1301 (2005).

    Article  CAS  Google Scholar 

  5. Braun, T. et al. Nat. Nanotechnol. 4, 179–185 (2009).

    Article  CAS  Google Scholar 

  6. Cooper, M.A. J. Mol. Recognit. 17, 286–315 (2004).

    Article  CAS  Google Scholar 

  7. Beseničar, M., Maček, P., Lakey, J.H. & Anderluh, G. Chem. Phys. Lipids 141, 169–178 (2006).

    Article  Google Scholar 

  8. Dahlin, A. et al. J. Am. Chem. Soc. 127, 5043–5048 (2005).

    Article  CAS  Google Scholar 

  9. Galush, W.J. et al. Nano Lett. 9, 2077–2082 (2009).

    Article  CAS  Google Scholar 

  10. Jonsson, M.P., Jonsson, P., Dahlin, A.B. & Hook, F. Nano Lett. 7, 3462–3468 (2007).

    Article  CAS  Google Scholar 

  11. Baciu, C.L., Becker, J., Janshoff, A. & Sonnichsen, C. Nano Lett. 8, 1724–1728 (2008).

    Article  CAS  Google Scholar 

  12. Tao, A., Sinsermsuksakul, P. & Yang, P. Angew. Chem. Int. Ed. 45, 4597–4601 (2006).

    Article  CAS  Google Scholar 

  13. Roiter, Y. et al. Langmuir 25, 6287–6299 (2009).

    Article  CAS  Google Scholar 

  14. Middleton, E.R. & Rhoades, E. Biophys. J. 99, 2279–2288 (2010).

    Article  CAS  Google Scholar 

  15. Garrenton, L.S., Young, S.L. & Thorner, J. Genes Dev. 20, 1946–1958 (2006).

    Article  CAS  Google Scholar 

  16. Zhao, C., Du, G.W., Skowronek, K., Frohman, M.A. & Bar-Sagi, D. Nat. Cell Biol. 9, 706–712 (2007).

    CAS  PubMed  Google Scholar 

  17. Fievet, F., Lagier, J.P., Blin, B., Beaudoin, B. & Figlarz, M. Solid State Ionics 32–33 (Part 1), 198–205 (1989).

    Article  Google Scholar 

  18. Sun, Y. & Xia, Y. Science 298, 2176–2179 (2002).

    Article  CAS  Google Scholar 

  19. Stöber, W., Fink, A. & Bohn, E. J. Colloid Interface Sci. 26, 62–69 (1968).

    Article  Google Scholar 

  20. Sioss, J.A., Stoermer, R.L., Sha, M.Y. & Keating, C.D. Langmuir 23, 11334–11341 (2007).

    Article  CAS  Google Scholar 

  21. Willets, K.A. & Van Duyne, R.P. Annu. Rev. Phys. Chem. 58, 267–297 (2007).

    Article  CAS  Google Scholar 

  22. Sherry, L.J. et al. Nano Lett. 5, 2034–2038 (2005).

    Article  CAS  Google Scholar 

  23. Mayer, K.M. & Hafner, J.H. Chem. Rev. 111, 3828–3857 (2011).

    Article  CAS  Google Scholar 

  24. Forstner, M.B., Yee, C.K., Parikh, A.N. & Groves, J.T. J. Am. Chem. Soc. 128, 15221–15227 (2006).

    Article  CAS  Google Scholar 

  25. Bacia, K. & Schwille, P. Nat. Protoc. 2, 2842–2856 (2007).

    Article  CAS  Google Scholar 

  26. Chen, Y., Müller, J.D., Eid, J.S. & Gratton, E. in New Trends in Fluorescence Spectroscopy: Applications to Chemical and Life Sciences (eds. Valeur, B. & Brochon, J.-C.), Ch. 14–15, 277–302 (Springer, Berlin, 2001).

  27. Palik, E.D. Handbook of Optical Constants of Solids (Academic, Amsterdam, 1998).

Download references

Acknowledgements

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231 (to J.T.G.) and by US National Institutes of Health Research Grant GM21841 (to J.T.). P.Y. would like to acknowledge the support from King Abdulaziz University.

Author information

Authors and Affiliations

Authors

Contributions

H.-J.W. and J.T.G. conceived the solution-phase nanocube sensor strategy. H.-J.W. implemented the experiments, J.H. synthesized nanocubes and performed TEM, W.-C.L. performed FCS measurements, C.R. performed LSPR simulations and Z.L. and E.S. prepared Ste5 proteins. H.-J.W., C.R. and J.T.G. wrote the manuscript. J.T.G., J.T. and P.Y. supervised the project. All authors discussed the results and commented on the manuscript at all stages.

Corresponding author

Correspondence to Jay T Groves.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Table 1 and Supplementary Discussion (PDF 1434 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, HJ., Henzie, J., Lin, WC. et al. Membrane-protein binding measured with solution-phase plasmonic nanocube sensors. Nat Methods 9, 1189–1191 (2012). https://doi.org/10.1038/nmeth.2211

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2211

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing