Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Autonomous screening of C. elegans identifies genes implicated in synaptogenesis

Abstract

Morphometric studies in multicellular organisms are generally performed manually because of the complexity of multidimensional features and lack of appropriate tools for handling these organisms. Here we present an integrated system that identifies and sorts Caenorhabditis elegans mutants with altered subcellular traits in real time without human intervention. We performed self-directed screens 100 times faster than manual screens and identified both genes and phenotypic classes involved in synapse formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integrated system for autonomous screening of C. elegans expressing fluorescent reporters.
Figure 2: Autonomous screens for C. elegans mutants with altered synaptic patterns.

Similar content being viewed by others

References

  1. Jorgensen, E.M. & Mango, S.E. Nat. Rev. Genet. 3, 356–369 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Huang, K. & Murphy, R.F. BMC Bioinformatics 5, 78 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Whitehurst, A.W. et al. Nature 446, 815–819 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Jones, T.R. et al. Proc. Natl. Acad. Sci. USA 106, 1826–1831 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Collinet, C. et al. Nature 464, 243–249 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Bakal, C., Aach, J., Church, G. & Perrimon, N. Science 316, 1753–1756 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Perlman, Z.E. et al. Science 306, 1194–1198 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Doitsidou, M., Flames, N., Lee, A.C., Boyanov, A. & Hobert, O. Nat. Methods 5, 869–872 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chung, K., Crane, M.M. & Lu, H. Nat. Methods 5, 637–643 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Crane, M.M., Chung, K. & Lu, H. Lab Chip 9, 38–40 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Rohde, C.B., Zeng, F., Gonzalez-Rubio, R., Angel, M. & Yanik, M.F. Proc. Natl. Acad. Sci. USA 104, 13891–13895 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Murray, J.I. et al. Nat. Methods 5, 703–709 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Klassen, M.P. & Shen, K. Cell 130, 704–716 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Poon, V.Y., Klassen, M.P. & Shen, K. Nature 455, 669–673 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ou, C.-Y. et al. Cell 141, 846–858 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brenner, S. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wood, W.B. The Nematode Caenorhabditis elegans (Cold Spring Harbor Laboratory Press, 1988).

  18. Unger, M.A., Chou, H.P., Thorsen, T., Scherer, A. & Quake, S.R. Science 288, 113–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Duffy, D.C., McDonald, J.C., Schueller, O.J.A. & Whitesides, G.M. Anal. Chem. 70, 4974–4984 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Chung, K. & Lu, H. Lab Chip 9, 2764–2766 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Ellis, R.E., Jacobson, D.M. & Horvitz, H.R. Genetics 129, 79–94 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank funding from the US National Institutes of Health, US National Science Foundation, Alfred P. Sloan Foundation and Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

M.M.C. wrote the software, designed the microfluidic device and performed the screens. M.M.C. and J.N.S. designed and built the external system components. C.-Y.O. performed the complementation tests. P.T.K. performed the mapping and provided valuable reagents. M.M.C., J.N.S., J.M.R., K.S. and H.L. designed the experiments and prepared the manuscript.

Corresponding author

Correspondence to Hang Lu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Tables 1 and 2 and Supplementary Notes 1–4 (PDF 779 kb)

Supplementary Software

Supplementary Software (ZIP 274 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crane, M., Stirman, J., Ou, CY. et al. Autonomous screening of C. elegans identifies genes implicated in synaptogenesis. Nat Methods 9, 977–980 (2012). https://doi.org/10.1038/nmeth.2141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing