Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Gene editing: not just for translation anymore

Engineered nucleases have advanced the field of gene therapy with the promise of targeted genome modification as a treatment for human diseases. Here we discuss why engineered nucleases are an exciting research tool for gene editing and consider their applications to a range of biological questions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome editing using a single pair of engineered nucleases.
Figure 2: Genome editing using two pairs of engineered nucleases.

References

  1. Jasin, M. Trends Genet. 12, 224–228 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Porteus, M.H. & Baltimore, D. Science 300, 763 (2003).

    Article  PubMed  Google Scholar 

  3. Bibikova, M., Golic, M., Golic, K.G. & Carroll, D. Genetics 161, 1169–1175 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pâques, F. & Duchateau, P. Curr. Gene Ther. 7, 49–66 (2007).

    Article  PubMed  Google Scholar 

  5. Kim, Y.G., Cha, J. & Chandrasegaran, S. Proc. Natl. Acad. Sci. USA 93, 1156–1160 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miller, J.C. et al. Nat. Biotechnol. 29, 143–148 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Moscou, M.J. & Bogdanove, A.J. Science 326, 1501 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Christian, M. et al. Genetics 186, 757–761 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boch, J. et al. Science 326, 1509–1512 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Napoli, C., Lemieux, C. & Jorgensen, R. Plant Cell 2, 279–289 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fire, A. et al. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Santiago, Y. et al. Proc. Natl. Acad. Sci. USA 105, 5809–5814 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Perez, E.E. et al. Nat. Biotechnol. 26, 808–816 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Holt, N. et al. Nat. Biotechnol. 28, 839–847 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, P.-Q. et al. Biotechnol. Bioeng. 106, 97–105 (2010).

    CAS  PubMed  Google Scholar 

  16. Lee, H.J., Kim, E. & Kim, J.-S. Genome Res. 20, 81–89 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, F. et al. Nat. Methods 8, 753–755 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brunet, E. et al. Proc. Natl. Acad. Sci. USA 106, 10620–10625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chiarle, R. et al. Cell 147, 107–119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wigler, M. et al. Cell 16, 777–785 (1979).

    Article  CAS  PubMed  Google Scholar 

  21. Doyon, J.B. et al. Nat. Cell Biol. 13, 331–337 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hockemeyer, D. et al. Nat. Biotechnol. 29, 731–734 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Soldner, F. et al. Cell 146, 318–331 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. DeKelver, R.C. et al. Genome Res. 20, 1133–1142 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zou, J., Mali, P., Huang, X., Dowey, S.N. & Cheng, L. Blood 118, 4599–4608 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sebastiano, V. et al. Stem Cells 29, 1717–1726 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Urnov, F.D. et al. Nat. Rev. Genet. 11, 636–646 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. DeFrancesco, L. Nat. Biotechnol. 29, 681–684 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

M.P. thanks the Burroughs-Wellcome Fund, the Stanford School of Medicine Laurie Kraus Lacob Faculty Scholar Fund, the Amon Carter Fund and the National Institutes of Health Nanomedicine Development Center for Nucleoprotein Machines for their support. M.A.M. thanks the Stanford University Dean's Post-Doctoral Fellow Award for its support. M.R. thanks the Northwest Genome Engineering Consortium funded by the National Institutes of Health for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Porteus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMahon, M., Rahdar, M. & Porteus, M. Gene editing: not just for translation anymore. Nat Methods 9, 28–31 (2012). https://doi.org/10.1038/nmeth.1811

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1811

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing