Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A guide to analysis of mouse energy metabolism

Abstract

We present a consolidated view of the complexity and challenges of designing studies for measurement of energy metabolism in mouse models, including a practical guide to the assessment of energy expenditure, energy intake and body composition and statistical analysis thereof. We hope this guide will facilitate comparisons across studies and minimize spurious interpretations of data. We recommend that division of energy expenditure data by either body weight or lean body weight and that presentation of group effects as histograms should be replaced by plotting individual data and analyzing both group and body-composition effects using analysis of covariance (ANCOVA).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Problems of analysis and interpretation of energy expenditure demonstrated on hypothetical data.
Figure 2: A practical example of the use of different approaches to the analysis of energy metabolism in the mouse.
Figure 3: Flowchart for mouse energy metabolism phenotype analysis for mouse models.

Similar content being viewed by others

References

  1. Woods, S.C., Schwartz, M.W., Baskin, D.G. & Seeley, R.J. Food intake and the regulation of body weight. Annu. Rev. Psychol. 51, 255–277 (2000).

    Article  CAS  Google Scholar 

  2. Arch, J.R., Hislop, D., Wang, S.J. & Speakman, J.R. Some mathematical and technical issues in the measurement and interpretation of open-circuit indirect calorimetry in small animals. Int. J. Obes. 30, 1322–1331 (2006).

    Article  CAS  Google Scholar 

  3. Butler, A.A. & Kozak, L.P. A recurring problem with the analysis of energy expenditure in genetic models expressing lean and obese phenotypes. Diabetes 59, 323–329 (2010).

    Article  CAS  Google Scholar 

  4. Kaiyala, K.J. et al. Identification of body fat mass as a major determinant of metabolic rate in mice. Diabetes 59, 1657–1666 (2010).

    Article  CAS  Google Scholar 

  5. Guo, J. & Hall, K.D. Estimating the continuous-time dynamics of energy and fat metabolism in mice. PLoS Comput. Biol. 5, e10005111 (2009).

    Google Scholar 

  6. Almind, K. & Kahn, C.R. Genetic determinants of energy expenditure and insulin resistance in diet-induced obesity in mice. Diabetes 53, 3274–3285 (2004).

    Article  CAS  Google Scholar 

  7. Champy, M.F. et al. Genetic background determines metabolic phenotypes in the mouse. Mamm. Genome 19, 318–331 (2008).

    Article  CAS  Google Scholar 

  8. Arndt, S.S. et al. Individual housing of mice–impact on behaviour and stress responses. Physiol. Behav. 97, 385–393 (2009).

    Article  CAS  Google Scholar 

  9. Champy, M.F. et al. Mouse functional genomics requires standardization of mouse handling and housing conditions. Mamm. Genome 15, 768–783 (2004).

    Article  Google Scholar 

  10. Hunt, C. & Hambly, C. Faecal corticosterone concentrations indicate that separately housed male mice are not more stressed than group housed males. Physiol. Behav. 87, 519–526 (2006).

    Article  CAS  Google Scholar 

  11. Martin, A.L. & Brown, R.E. The lonely mouse: verification of a separation-induced model of depression in female mice. Behav. Brain Res. 207, 196–207 (2010).

    Article  CAS  Google Scholar 

  12. Bartolomucci, A. et al. Metabolic consequences and vulnerability to diet-induced obesity in male mice under chronic social stress. PLoS ONE 4, e4331 (2009).

    Article  Google Scholar 

  13. Bartolomucci, A. Social stress, immune functions and disease in rodents. Front. Neuroendocrinol. 28, 28–49 (2007).

    Article  CAS  Google Scholar 

  14. Bartolomucci, A. et al. Age at group formation alters behavior and physiology in male but not female CD-1 mice. Physiol. Behav. 82, 425–434 (2004).

    Article  CAS  Google Scholar 

  15. Cohn, D.W.H. & Sa-Rocha, L.C. Sickness and aggressive behavior in dominant and subordinate mice. Ethology 115, 112–121 (2009).

    Article  Google Scholar 

  16. Moles, A. et al. Psychosocial stress affects energy balance in mice: modulation by social status. Psychoneuroendocrinology 31, 623–633 (2006).

    Article  CAS  Google Scholar 

  17. Schmidt, M.V. et al. Persistent neuroendocrine and behavioral effects of a novel, etiologically relevant mouse paradigm for chronic social stress during adolescence. Psychoneuroendocrinology 32, 417–429 (2007).

    Article  CAS  Google Scholar 

  18. Ader, D.N., Johnson, S.B., Huang, S.W. & Riley, W.J. Group size, cage shelf level, and emotionality in non-obese diabetic mice: impact on onset and incidence of IDDM. Psychosom. Med. 53, 313–321 (1991).

    Article  CAS  Google Scholar 

  19. Dahlin, J. et al. Body weight and faecal corticosterone metabolite excretion in male Sprague-Dawley rats following short transportation and transfer from group-housing to single-housing. Scand. J. Lab Anim. Sci. 36, 205–213 (2009).

    CAS  Google Scholar 

  20. Reynolds, D.S. & Kunz, T.H. Standard methods for destructive body composition analysis. in Body Composition Analysis of Animals: A Handbook of Non-Destructive Methods. (ed., Speakman, J.R.) 39–55 (Cambridge University Press, 2001).

  21. Faber, P., Lammert, O., Johansen, O. & Garby, L. A fast responding combined direct and indirect calorimeter for human subjects. Med. Eng. Phys. 20, 291–301 (1998).

    Article  CAS  Google Scholar 

  22. Levine, J.A. Measurement of energy expenditure. Public Health Nutr. 8, 1123–1132 (2005).

    Article  Google Scholar 

  23. Spinnler, G., Jequier, E., Favre, R., Dolivo, M. & Vannotti, A. Human calorimeter with a new type of gradient layer. J. Appl. Physiol. 35, 158–165 (1973).

    Article  CAS  Google Scholar 

  24. Lifson, N., Gordon, G.B. & McClintock, R. Measurement of total carbon dioxide production by D2O18. J. Appl. Physiol. 7, 704–710 (1955).

    Article  CAS  Google Scholar 

  25. Lifson, N. & McClintock, R. Theory of use of turnover rates of body water for measuring energy and material balance. J. Theor. Biol 12, 46–74 (1966).

    Article  CAS  Google Scholar 

  26. Speakman, J.R. Doubly-Labelled Water: Theory and Practice (Kluwer Academic Publishers, 1997).

  27. Speakman, J.R. & Krol, E. Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79, 726–746 (2010).

    PubMed  Google Scholar 

  28. Krol, E., Murphy, M. & Speakman, J.R. Limits to sustained energy intake. X. Effects of fur removal on reproductive performance in laboratory mice. J. Exp. Biol. 210, 4233–4243 (2007).

    Article  Google Scholar 

  29. Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).

    Article  CAS  Google Scholar 

  30. Kleiber, M. The Fire of Life: An Introduction to Animal Energetics (Wiley and Co., 1961).

  31. Rubner, M. Über den einfluss der körpergrösse auf stoff- und kraftwechsel. Z. Biol. 19, 536–562 (1883).

    Google Scholar 

  32. Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. & West, G.B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  33. White, C.R., Blackburn, T.M. & Seymour, R.S. Phylogenetically informed analysis of the allometry of mammalian basal metabolic rate supports neither geometric nor quarter-power scaling. Evolution 63, 2658–2667 (2009).

    Article  Google Scholar 

  34. Kolokotrones, T., Savage, V., Deeds, E.J. & Fontana, W. Curvature in metabolic scaling. Nature 464, 753–756 (2010).

    Article  CAS  Google Scholar 

  35. Elia, M. Organ and tissue contribution to metabolic rate. in Energy Metabolism: Tissue Determinants and Cellular Corollaries (eds. Elia, M., Kinney, J.M. & Tucker, H.N.) 61–80 (Raven, 1992).

  36. Krebs, H.A. Body size and tissue respiration. Biochim. Biophys. Acta 4, 249–269 (1950).

    Article  CAS  Google Scholar 

  37. Allison, D.B., Paultre, F., Goran, M.I., Poehlman, E.T. & Heymsfield, S.B. Statistical considerations regarding the use of ratios to adjust data. Int. J. Obes. 19, 644–652 (1995).

    CAS  Google Scholar 

  38. Poehlman, E.T. & Toth, M.J. Mathematical ratios lead to spurious conclusions regarding age-related and sex-related differences in resting metabolic-rate. Am. J. Clin. Nutr. 61, 482–485 (1995).

    Article  CAS  Google Scholar 

  39. Ravussin, E. & Bogardus, C. Relationship of genetics, age, and physical-fitness to daily energy-expenditure and fuel utilization. Am. J. Clin. Nutr. 49, 968–975 (1989).

    Article  CAS  Google Scholar 

  40. Johnstone, A.M., Murison, S.D., Duncan, J.S., Rance, K.A. & Speakman, J.R. Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. Am. J. Clin. Nutr. 82, 941–948 (2005).

    Article  CAS  Google Scholar 

  41. Rolfe, D.F.S. & Brown, G.C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 77, 731–758 (1997).

    Article  CAS  Google Scholar 

  42. Virtanen, K.A. et al. Brief report: functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    Article  CAS  Google Scholar 

  43. Schmidt, M.V. et al. A novel chronic social stress paradigm in female mice. Horm. Behav. 57, 415–420 (2010).

    Article  CAS  Google Scholar 

  44. Speakman, J.R. & Hambly, C. Starving for life: what animal studies can and cannot tell us about the use of caloric restriction to prolong human lifespan. J. Nutr. 137, 1078–1086 (2007).

    Article  CAS  Google Scholar 

  45. Kaiyala, K.J. & Schwartz, M.W. Toward a more complete (and less controversial) understanding of energy expenditure and its role in obesity pathogenesis. Diabetes 60, 17–23 (2011).

    Article  CAS  Google Scholar 

  46. Daan, S., Masman, D. & Groenewold, A. Avian basal metabolic rates—their association with body-composition and energy-expenditure in nature. Am. J. Physiol. 259, R333–R340 (1990).

    CAS  PubMed  Google Scholar 

  47. Gallagher, D. et al. Small organs with a high metabolic rate explain lower resting energy expenditure in African American than in white adults. Am. J. Clin. Nutr. 83, 1062–1067 (2006).

    Article  CAS  Google Scholar 

  48. Gallagher, D. et al. Organ-tissue mass measurement allows modeling of REE and metabolically active tissue mass. Am J Physiol-Endoc M 38, E249–E258 (1998).

    Google Scholar 

  49. Heymsfield, S.B. et al. Body-size dependence of resting energy expenditure can be attributed to nonenergetic homogeneity of fat-free mass. Am J Physiol-Endoc M 282, E132–E138 (2002).

    CAS  Google Scholar 

  50. Konarzewski, M. & Diamond, J. Evolution of basal metabolic rate and organ masses in laboratory mice. Evolution 49, 1239–1248 (1995).

    Article  Google Scholar 

  51. Meyer, C.W. et al. Expanding the body mass range: associations between BMR and tissue morphology in wild type and mutant dwarf mice (David mice). J. Comp. Physiol. B 177, 183–192 (2007).

    Article  Google Scholar 

  52. Wang, Z.M. et al. Resting energy expenditure-fat-free mass relationship: new insights provided by body composition modeling. Am J Physiol-Endoc M 279, E539–E545 (2000).

    CAS  Google Scholar 

  53. Wang, Z.M., Heshka, S., Heymsfield, S.B., Shen, W. & Gallagher, D. A cellular-level approach to predicting resting energy expenditure across the adult years. Am. J. Clin. Nutr. 81, 799–806 (2005).

    Article  CAS  Google Scholar 

  54. Wang, Z.M., O'Connor, T.P., Heshka, S. & Heymsfield, S.B. The reconstruction of Kleiber's law at the organ-tissue level. J. Nutr. 131, 2967–2970 (2001).

    Article  CAS  Google Scholar 

  55. Speakman, J.R. et al. FTO effect on energy demand versus food intake. Nature 464, E1–E5 (2010).

    Article  CAS  Google Scholar 

  56. Raichlen, D.A., Gordon, A.D., Muchlinski, M.N. & Snodgrass, J.J. Causes and significance of variation in mammalian basal metabolism. J. Comp. Physiol. B 180, 301–311 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.H.T., J.R.S., C.R.K. and E.R. conceptualized and wrote the manuscript. J.R.S.A. provided original data and biomathematics advice. J.A. edited the manuscript and co-wrote sections on environment-genetics interactions. J.C.B. and T.L.H. edited aspects of the manuscript relevant for neuronal control of energy metabolism. L.C., R.H.E., G.I.S. and R.V.F. Jr. wrote and edited sections on nutrient partitioning and energy metabolism measurements. J.E.G. generated the table. M.A.H., B.B.K. and E.M.,-F. contributed to the sections on quantification of BC, locomotor activity and food intake. C.H. provided the data for Figure 2. T.D.M. wrote sections on housing and husbandry, and integrated all references. H.M. contributed advice and sections on study design and diets. P.T.P. generated the flowcharts together with M.H.T. and co-wrote sections on practical aspects of calorimetry and study design. L.P. co-edited the manuscript and added practical examples and calculations. M.L.R. and K.R. contributed advice on sections regarding BC and thermogenesis. J.A., S.C.K. and G.T. added input regarding relevant pitfalls arising based on the use of mouse genetics. All authors edited and agreed on the final version of the manuscript.

Corresponding authors

Correspondence to C Ronald Kahn or Eric Ravussin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 and Supplementary Notes 1–5 (PDF 579 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tschöp, M., Speakman, J., Arch, J. et al. A guide to analysis of mouse energy metabolism. Nat Methods 9, 57–63 (2012). https://doi.org/10.1038/nmeth.1806

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1806

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing