Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Long-term single-cell imaging of mammalian stem cells

Abstract

Continuous long-term single-cell observation provides insight into the molecular control of cell fate. This is particularly important for rare and heterogeneous populations of cells, such as mammalian stem cells. The current lack of usable off-the-shelf hardware and software for such experiments makes their implementation technically challenging. Here I discuss the need for continuous single-cell quantification to understand molecular cell fate control as well as organizational and technical solutions for long-term imaging and tracking of stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Continuous single-cell analyses are essential for understanding molecular cell fate control.
Figure 2
Figure 3: Real-time detection of surface markers on living cells with antibodies.

Similar content being viewed by others

References

  1. Barker, N. et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25–36 (2010).

    Article  CAS  Google Scholar 

  2. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  CAS  Google Scholar 

  3. Benveniste, P. et al. Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell 6, 48–58 (2010).

    Article  CAS  Google Scholar 

  4. Kiel, M.J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  Google Scholar 

  5. Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245 (1996).

    Article  CAS  Google Scholar 

  6. Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature 439, 84–88 (2006).

    Article  CAS  Google Scholar 

  7. Stingl, J. et al. Purification and unique properties of mammary epithelial stem cells. Nature 439, 993–997 (2006).

    Article  CAS  Google Scholar 

  8. Dykstra, B. et al. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1, 218–229 (2007).

    Article  CAS  Google Scholar 

  9. Lemischka, I.R., Raulet, D.H. & Mulligan, R.C. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45, 917–927 (1986).

    Article  CAS  Google Scholar 

  10. Schroeder, T. Hematopoietic stem cell heterogeneity: subtypes, not unpredictable behavior. Cell Stem Cell 6, 203–207 (2010).

    Article  CAS  Google Scholar 

  11. Chang, H.H., Hemberg, M., Barahona, M., Ingber, D.E. & Huang, S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453, 544–547 (2008).

    Article  CAS  Google Scholar 

  12. Cross, M.A. et al. Expression of lineage restricted transcription factors precedes lineage specific differentiation in a multipotent haemopoietic progenitor cell line. Oncogene 9, 3013–3016 (1994).

    CAS  PubMed  Google Scholar 

  13. Graf, T. & Enver, T. Forcing cells to change lineages. Nature 462, 587–594 (2009).

    Article  CAS  Google Scholar 

  14. Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230–1234 (2007).

    Article  CAS  Google Scholar 

  15. Huang, S. Non-genetic heterogeneity of cells in development: more than just noise. Development 136, 3853–3862 (2009).

    Article  CAS  Google Scholar 

  16. Spiller, D.G., Wood, C.D., Rand, D.A. & White, M.R. Measurement of single-cell dynamics. Nature 465, 736–745 (2010).

    Article  CAS  Google Scholar 

  17. Rieger, M.A. & Schroeder, T. Exploring hematopoiesis at single cell resolution. Cells Tissues Organs 188, 139–149 (2008).

    Article  Google Scholar 

  18. Schroeder, T. Tracking hematopoiesis at the single cell level. Ann. NY Acad. Sci. 1044, 201–209 (2005).

    Article  Google Scholar 

  19. Schroeder, T. Imaging stem-cell-driven regeneration in mammals. Nature 453, 345–351 (2008).

    Article  CAS  Google Scholar 

  20. Schroeder, T. The electronic crystal ball: predicting cell fate from time-lapse data. Nat. Methods 7, 190–191 (2010).

    Article  CAS  Google Scholar 

  21. Eilken, H.M., Nishikawa, S. & Schroeder, T. Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 457, 896–900 (2009).

    Article  CAS  Google Scholar 

  22. Rieger, M.A., Hoppe, P.S., Smejkal, B.M., Eitelhuber, A.C. & Schroeder, T. Hematopoietic cytokines can instruct lineage choice. Science 325, 217–218 (2009).

    Article  CAS  Google Scholar 

  23. Megason, S.G. & Fraser, S.E. Imaging in systems biology. Cell 130, 784–795 (2007).

    Article  CAS  Google Scholar 

  24. Rieger, M.A. & Schroeder, T. Analyzing cell fate control by cytokines through continuous single cell biochemistry. J. Cell. Biochem. 108, 343–352 (2009).

    Article  CAS  Google Scholar 

  25. Baker, M. Cellular imaging: taking a long, hard look. Nature 466, 1137–1140 (2010).

    Article  CAS  Google Scholar 

  26. Cohen, A.R., Gomez, F.L.A., Roysam, B. & Cayouette, M. Computational prediction of neural progenitor cell fates. Nat. Methods 7, 213–218 (2010).

    Article  CAS  Google Scholar 

  27. Kuang, S., Kuroda, K., Le Grand, F. & Rudnicki, M.A. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129, 999–1010 (2007).

    Article  CAS  Google Scholar 

  28. Costa, M. et al. Continuous live imaging of adult neural stem cell division and lineage progression in vitro. Development 138, 1057–1068 (2011).

    Article  CAS  Google Scholar 

  29. Costa, M.R., Bucholz, O., Schroeder, T. & Gotz, M. Late origin of glia-restricted progenitors in the developing mouse cerebral cortex. Cereb. Cortex 19 Suppl 1, i135–i143 (2009).

    Article  Google Scholar 

  30. Dykstra, B. et al. High-resolution video monitoring of hematopoietic stem cells cultured in single-cell arrays identifies new features of self-renewal. Proc. Natl. Acad. Sci. USA 103, 8185–8190 (2006).

    Article  CAS  Google Scholar 

  31. Shen, Q. et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat. Neurosci. 9, 743–751 (2006).

    Article  CAS  Google Scholar 

  32. Costa, M.R., Wen, G., Lepier, A., Schroeder, T. & Gotz, M. Par-complex proteins promote proliferative progenitor divisions in the developing mouse cerebral cortex. Development 135, 11–22 (2008).

    Article  CAS  Google Scholar 

  33. Kimura, A. et al. The transcription factors STAT5A/B regulate GM-CSF-mediated granulopoiesis. Blood 114, 4721–4728 (2009).

    Article  CAS  Google Scholar 

  34. Ravin, R. et al. Potency and fate specification in CNS stem cell populations in vitro. Cell Stem Cell 3, 670–680 (2008).

    Article  CAS  Google Scholar 

  35. Berninger, B. et al. Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J. Neurosci. 27, 8654–8664 (2007).

    Article  CAS  Google Scholar 

  36. Heinrich, C. et al. Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol. 8, e1000373 (2010).

    Article  Google Scholar 

  37. Heinrich, C. et al. Generation of subtype specific neurons from postnatal astroglia of the mouse cerebral cortex. Nat. Protoc. 6, 214–228 (2011).

    Article  CAS  Google Scholar 

  38. Warlich, E. et al. Lentiviral vector design and imaging approaches to visualize the early stages of cellular reprogramming. Mol. Ther. advance online publication, doi:10.1038/mt.2010.314 (1 February 2011).

    Article  CAS  Google Scholar 

  39. Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603–614 (2010).

    Article  CAS  Google Scholar 

  40. Tsien, R.Y. Imagining imaging's future. Nat. Rev. Mol. Cell Biol. 4 (suppl.), SS16–SS21 (2003).

    Google Scholar 

  41. Stadtfeld, M., Varas, F. & Graf, T. Fluorescent protein-cell labeling and its application in time-lapse analysis of hematopoietic differentiation. Methods Mol. Med. 105, 395–412 (2005).

    CAS  PubMed  Google Scholar 

  42. Rothbauer, U. et al. Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat. Methods 3, 887–889 (2006).

    Article  CAS  Google Scholar 

  43. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    Article  CAS  Google Scholar 

  44. Pantazis, P., Maloney, J., Wu, D. & Fraser, S.E. Second harmonic generating (SHG) nanoprobes for in vivo imaging. Proc. Natl. Acad. Sci. USA 107, 14535–14540 (2010).

    Article  CAS  Google Scholar 

  45. Eilken, H.M. et al. Continuous long-term detection of live cell surface markers by 'in culture' antibody staining. Protoc. Exchange doi:10.1038/protex.2011.205 (published online 28 January 2011).

  46. Cappello, S. et al. The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. Nat. Neurosci. 9, 1099–1107 (2006).

    Article  CAS  Google Scholar 

  47. Collins, T.J. ImageJ for microscopy. Biotechniques 43, 25–30 (2007).

    Article  Google Scholar 

  48. Lamprecht, M.R., Sabatini, D.M. & Carpenter, A.E. CellProfiler: free, versatile software for automated biological image analysis. Biotechniques 42, 71–75 (2007).

    Article  CAS  Google Scholar 

  49. Macarthur, B.D., Ma'ayan, A. & Lemischka, I.R. Systems biology of stem cell fate and cellular reprogramming. Nat. Rev. Mol. Cell Biol. 10, 672–681 (2009).

    Article  CAS  Google Scholar 

  50. Whichard, Z.L., Sarkar, C.A., Kimmel, M. & Corey, S.J. Hematopoiesis and its disorders: a systems biology approach. Blood 115, 2339–2347 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was in part financed by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timm Schroeder.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schroeder, T. Long-term single-cell imaging of mammalian stem cells. Nat Methods 8 (Suppl 4), S30–S35 (2011). https://doi.org/10.1038/nmeth.1577

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1577

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing