Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

High-throughput single-molecule optofluidic analysis

Abstract

We describe a high-throughput, automated single-molecule measurement system, equipped with microfluidics. The microfluidic mixing device has integrated valves and pumps to accurately accomplish titration of biomolecules with picoliter resolution. We demonstrate that the approach enabled rapid sampling of biomolecule conformational landscape and of enzymatic activity, in the form of transcription by Escherichia coli RNA polymerase, as a function of the chemical environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A microfluidic formulator for high-throughput single-molecule FRET measurements.
Figure 2: RNAP activity measured with smFRET.

Similar content being viewed by others

References

  1. Maxwell, K.L. et al. Protein Sci. 14, 602–616 (2005).

    Article  CAS  Google Scholar 

  2. Ha, T. et al. Proc. Natl. Acad. Sci. USA 93, 6264–6268 (1996).

    Article  CAS  Google Scholar 

  3. Melin, J. & Quake, S.R. Annu. Rev. Biophys. Biomol. Struct. 36, 213–231 (2007).

    Article  CAS  Google Scholar 

  4. Squires, T.M. & Quake, S.R. Rev. Mod. Phys. 77, 977–1026 (2005).

    Article  CAS  Google Scholar 

  5. Hamadani, K.M. & Weiss, S. Biophys. J. 95, 352–365 (2008).

    Article  CAS  Google Scholar 

  6. Hertzog, D.E. et al. Anal. Chem. 76, 7169–7178 (2004).

    Article  CAS  Google Scholar 

  7. Lipman, E.A., Schuler, B., Bakajin, O. & Eaton, W.A. Science 301, 1233–1235 (2003).

    Article  CAS  Google Scholar 

  8. Pfeil, S.H., Wickersham, C.E., Hoffmann, A. & Lipman, E.A. Rev. Sci. Instrum. 80, 055105 (2009).

    Article  Google Scholar 

  9. Vandelinder, V., Ferreon, A.C., Gambin, Y., Deniz, A.A. & Groisman, A. Anal. Chem. 81, 6929–6935 (2009).

    Article  CAS  Google Scholar 

  10. Lemke, E.A. et al. J. Am. Chem. Soc. 131, 13610–13612 (2009).

    Article  CAS  Google Scholar 

  11. Hansen, C.L., Sommer, M.O. & Quake, S.R. Proc. Natl. Acad. Sci. USA 101, 14431–14436 (2004).

    Article  CAS  Google Scholar 

  12. Ridgeway, W.K., Seitaridou, E., Phillips, R. & Williamson, J.R. Nucleic Acids Res. 37, e142 (2009).

    Article  Google Scholar 

  13. Kapanidis, A.N. et al. Proc. Natl. Acad. Sci. USA 101, 8936–8941 (2004).

    Article  CAS  Google Scholar 

  14. Gralla, J.D. & Huo, Y.X. Biochemistry 47, 13189–13196 (2008).

    Article  CAS  Google Scholar 

  15. Colyer, R.A. et al. Proc. SPIE 7571, 75710G (2010).

    Article  Google Scholar 

  16. Kapanidis, A.N. et al. Science 314, 1144–1147 (2006).

    Article  Google Scholar 

  17. Unger, M.A., Chou, H.-P., Thorsen, T., Scherer, A. & Quake, S.R. Science 288, 113–116 (2000).

    Article  CAS  Google Scholar 

  18. Zimm, B.H., Roe, G.M. & Epstein, L.F. J. Chem. Phys. 24, 279–280 (1956).

    Article  CAS  Google Scholar 

  19. Allawi, H.T. & SantaLucia, J. Biochemistry 36, 10581–10594 (1997).

    Article  CAS  Google Scholar 

  20. Owczarzy, R. et al. Biochemistry 43, 3537–3554 (2004).

    Article  CAS  Google Scholar 

  21. Sugimoto, N. et al. Biochemistry 34, 11211–11216 (1995).

    Article  CAS  Google Scholar 

  22. Erickson, D., Li, D. & Krull, U.J. Anal. Biochem. 317, 186–200 (2003).

    Article  CAS  Google Scholar 

  23. Majumdar, D.S. et al. Proc. Natl. Acad. Sci. USA 104, 12640–12645 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Colyer, P. Blainey and other members of the Weiss and Quake laboratories for helpful discussions. This work was supported by US National Science Foundation Frontiers in Integrative Biological Research grant 0623664 and National Institutes of Health grant GM069709. Fluorescence spectroscopy was performed at the University of California, Los Angeles and California NanoSystems Institute Advanced Light Microscopy and Spectroscopy Shared Facility. A.M.S. was supported by the Stanford University Diversifying Academia, Recruiting Excellence fellowship.

Author information

Authors and Affiliations

Authors

Contributions

S.K., A.M.S. and D.S.M. designed experiments, conducted experiments, wrote and implemented data acquisition and analysis software, and analyzed data. R.R.L. analyzed data. S.K., A.M.S., S.R.Q., S.W. and D.S.M. assisted in writing and editing of the manuscript.

Corresponding authors

Correspondence to Shimon Weiss or Devdoot S Majumdar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Note 1, Supplementary Table 1 (PDF 918 kb)

Supplementary Software

Software used in this study to control and coordinate microfluidics and optical components. (ZIP 112854 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Streets, A., Lin, R. et al. High-throughput single-molecule optofluidic analysis. Nat Methods 8, 242–245 (2011). https://doi.org/10.1038/nmeth.1569

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1569

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing