Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster

This article has been updated

Abstract

To facilitate studies of neural network architecture and formation, we generated three Drosophila melanogaster variants of the mouse Brainbow-2 system, called Flybow. Sequences encoding different membrane-tethered fluorescent proteins were arranged in pairs within cassettes flanked by recombination sites. Flybow combines the Gal4-upstream activating sequence binary system to regulate transgene expression and an inducible modified Flp-FRT system to drive inversions and excisions of cassettes. This provides spatial and temporal control over the stochastic expression of one of two or four reporters within one sample. Using the visual system, the embryonic nervous system and the wing imaginal disc, we show that Flybow in conjunction with specific Gal4 drivers can be used to visualize cell morphology with high resolution. Finally, we demonstrate that this labeling approach is compatible with available Flp-FRT-based techniques, such as mosaic analysis with a repressible cell marker; this could further support the genetic analysis of neural circuit assembly and function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of Flybow variants.
Figure 2: Activity of FB1.0 and FB1.1 transgenes.
Figure 3: Expression of FB1.1 transgenes in distinct cell populations.
Figure 4: FB2.0 facilitates sparse labeling of cells within a Gal4-expressing cell population.
Figure 5: Combining Flybow and MARCM for functional mosaic analysis.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

Change history

  • 16 February 2011

    In the version of this article initially published online, accession codes were not included. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  2. Golic, K.G. & Lindquist, S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499–509 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Pfeiffer, B.D. et al. Tools for neuroanatomy and neurogenetics in Drosophila. Proc. Natl. Acad. Sci. USA 105, 9715–9720 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Luan, H., Peabody, N.C., Vinson, C.R. & White, B.H. Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52, 425–436 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lai, S.L. & Lee, T. Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat. Neurosci. 9, 703–709 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Yagi, R., Mayer, F. & Basler, K. Refined LexA transactivators and their use in combination with the Drosophila Gal4 system. Proc. Natl. Acad. Sci. USA 107, 16166–16171 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Potter, C.J., Tasic, B., Russler, E.V., Liang, L. & Luo, L. The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141, 536–548 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Struhl, G. & Basler, K. Organizing activity of wingless protein in Drosophila. Cell 72, 527–540 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Ito, K., Awano, W., Suzuki, K., Hiromi, Y. & Yamamoto, D. The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124, 761–771 (1997).

    CAS  PubMed  Google Scholar 

  11. Wong, A.M., Wang, J.W. & Axel, R. Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109, 229–241 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Xu, T. & Rubin, G.M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237 (1993).

    CAS  PubMed  Google Scholar 

  13. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Fischbach, K.F. & Dittrich, A.P.M. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res. 258, 441–475 (1989).

    Article  Google Scholar 

  15. Hadjieconomou, D., Timofeev, K. & Salecker, I. A step-by-step guide to visual circuit assembly in Drosophila. Curr. Opin. Neurobiol. doi:10.1016/j.conb.2010.07.012 (2010).

  16. Siegal, M.L. & Hartl, D.L. Transgene coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. Genetics 144, 715–726 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Heidmann, D. & Lehner, C.F. Reduction of Cre recombinase toxicity in proliferating Drosophila cells by estrogen-dependent activity regulation. Dev. Genes Evol. 211, 458–465 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Voziyanov, Y., Konieczka, J.H., Stewart, A.F. & Jayaram, M. Stepwise manipulation of DNA specificity in Flp recombinase: progressively adapting Flp to individual and combinatorial mutations in its target site. J. Mol. Biol. 326, 65–76 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Branda, C.S. & Dymecki, S.M. Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6, 7–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Groth, A.C., Fish, M., Nusse, R. & Calos, M.P. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166, 1775–1782 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Morante, J. & Desplan, C. The color-vision circuit in the medulla of Drosophila. Curr. Biol. 18, 553–565 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brewster, R. & Bodmer, R. Origin and specification of type II sensory neurons in Drosophila. Development 121, 2923–2936 (1995).

    CAS  PubMed  Google Scholar 

  25. Pearson, B.J. & Doe, C.Q. Regulation of neuroblast competence in Drosophila. Nature 425, 624–628 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Senti, K.A. et al. Flamingo regulates R8 axon-axon and axon-target interactions in the Drosophila visual system. Curr. Biol. 13, 828–832 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Erclik, T., Hartenstein, V., McInnes, R.R. & Lipshitz, H.D. Eye evolution at high resolution: the neuron as a unit of homology. Dev. Biol. 332, 70–79 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Nern, A., Zhu, Y. & Zipursky, S.L. Local N-cadherin interactions mediate distinct steps in the targeting of lamina neurons. Neuron 58, 34–41 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goedhart, J. et al. Bright cyan fluorescent protein variants identified by fluorescence lifetime screening. Nat. Methods 7, 137–139 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Millard, S.S., Flanagan, J.J., Pappu, K.S., Wu, W. & Zipursky, S.L. Dscam2 mediates axonal tiling in the Drosophila visual system. Nature 447, 720–724 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liaw, C.W., Zamoyska, R. & Parnes, J.R. Structure, sequence, and polymorphism of the Lyt-2 T cell differentiation antigen gene. J. Immunol. 137, 1037–1043 (1986).

    CAS  PubMed  Google Scholar 

  32. Zamoyska, R., Vollmer, A.C., Sizer, K.C., Liaw, C.W. & Parnes, J.R. Two Lyt-2 polypeptides arise from a single gene by alternative splicing patterns of mRNA. Cell 43, 153–163 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Zacharias, D.A., Violin, J.D., Newton, A.C. & Tsien, R.Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Griesbeck, O., Baird, G.S., Campbell, R.E., Zacharias, D.A. & Tsien, R.Y. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276, 29188–29194 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Rizzo, M.A., Springer, G.H., Granada, B. & Piston, D.W. An improved cyan fluorescent protein variant useful for FRET. Nat. Biotechnol. 22, 445–449 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Newsome, T.P., Asling, B. & Dickson, B.J. Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127, 851–860 (2000).

    CAS  PubMed  Google Scholar 

  38. Bischof, J., Maeda, R.K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl. Acad. Sci. USA 104, 3312–3317 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin, D.M. & Goodman, C.S. Ectopic and increased expression of Fasciclin II alters motoneuron growth cone guidance. Neuron 13, 507–523 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Landgraf, M., Sanchez-Soriano, N., Technau, G.M., Urban, J. & Prokop, A. Charting the Drosophila neuropile: a strategy for the standardised characterisation of genetically amenable neurites. Dev. Biol. 260, 207–225 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Sepp, K.J. & Auld, V.J. Reciprocal interactions between neurons and glia are required for Drosophila peripheral nervous system development. J. Neurosci. 23, 8221–8230 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tabata, T., Schwartz, C., Gustavson, E., Ali, Z. & Kornberg, T.B. Creating a Drosophila wing de novo, the role of engrailed, and the compartment border hypothesis. Development 121, 3359–3369 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Joly and E. Ober (MRC National Institute for Medical Research) for sharing fluorescent protein cDNAs; Y. Voziyanov (University of Texas) for the altered-specificity Flp and FRT reagents; T. Hummel (University of Muenster), K. Keleman (Research Institute of Molecular Pathology), I. Miguel-Aliaga (University of Cambridge) and the members of the Bloomington Drosophila Stock Center for fly stocks; W. Joly for his technical advice for cloning; H. Apitz for help with dissections and mounting of some samples; and E. Ober, J.P. Vincent, S. Tozer, H. Apitz, E. Richardson, B. Richier, K. Timofeev and N. Shimosako for critical comments on the manuscript. Basic research at the Research Institute of Molecular Pathology is funded by Boehringer Ingelheim (S.R. and B.J.D.). The work at the National Institute for Medical Research is supported by the MRC (COIM1175, D.M.B.; U117581332, D.H. and I.S.).

Author information

Authors and Affiliations

Authors

Contributions

I.S., B.J.D., D.H. and C.A. designed the Flybow strategy. D.H. cloned the Flybow constructs, D.H. and I.S. generated the transgenic fly stocks, and D.H. conducted the experimental analysis. S.R. and B.J.D. developed the modified Flp-FRT system, and provided the original pKC26 UAS vector and the wild-type Flp-out cassette. C.A. provided expert advice for cloning, and D.M.B. provided expert advice for image acquisition and analysis. I.S. and D.H. wrote the manuscript in interaction with all contributing authors.

Corresponding author

Correspondence to Iris Salecker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 631 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadjieconomou, D., Rotkopf, S., Alexandre, C. et al. Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster. Nat Methods 8, 260–266 (2011). https://doi.org/10.1038/nmeth.1567

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1567

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing