Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

From cudgel to scalpel: toward precise neural control with optogenetics

Optogenetics is routinely used to activate and inactivate genetically defined neuronal populations in vivo. A second optogenetic revolution will occur when spatially distributed and sparse neural assemblies can be precisely manipulated in behaving animals.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Manipulating neural assemblies with light.
Figure 2: Methods for two-photon photostimulation with ChR2.
Figure 3: Effects of dense packing of neural element on the precision of photostimulation.
Figure 4: Hypothetical scheme to manipulate distributed, sparse assemblies.

References

  1. O'Connor, D.H., Huber, D. & Svoboda, K. Nature 461, 923–929 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Dombeck, D.A., Harvey, C.D., Tian, L., Looger, L.L. & Tank, D.W. Nat Neurosci 13, 1433–1440 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Deisseroth, K. Nat. Methods 8, 26–29 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Nagel, G. et al. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Han, X. & Boyden, E.S. PLoS ONE 2, e299 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang, F. et al. Nature 446, 633–639 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Hegemann, P. & Möglich, A. Nat. Methods 8, 39–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Tian, L. et al. Nat. Methods 6, 875–881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. O'Connor, D.H., Peron, S.P., Huber, D. & Svoboda, K. Neuron 67, 1048–1061 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Tsai, H.C. et al. Science 324, 1080–1084 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huber, D. et al. Nature 451, 61–64 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lima, S.Q., Hromadka, T., Znamenskiy, P. & Zador, A.M. PLoS ONE 4, e6099 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Buzsaki, G. Neuron 68, 362–385 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Helmchen, F. & Denk, W. Nat. Methods 2, 932–940 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Rickgauer, J.P. & Tank, D.W. Proc. Natl. Acad. Sci. 106, 15025–15030 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Papagiakoumou, E. et al. Nat. Methods 7, 848–854 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andrasfalvy, B.K., Zemelman, B.V., Tang, J. & Vaziri, A. Proc. Natl. Acad. Sci. USA 107, 11981–11986 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mishchenko, Y. et al. Neuron 67, 1009–1020 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Nat. Neurosci. 10, 663–668 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Lewis Jr., T.L., Mao, T., Svoboda, K. & Arnold, D.B. Nat. Neurosci. 12, 568–576 (2009).

    Article  Google Scholar 

  21. Grubb, M.S. & Burrone, J. PLoS ONE 5, e13761 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Reijmers, L.G., Perkins, B.L., Matsuo, N. & Mayford, M. Science 317, 1230–1233 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Guzowski, J.F. et al. Proc. Natl. Acad. Sci. USA 103, 1077–1082 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kennedy, M.J. et al. Nat. Methods 7, 973–975 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Vaziri, M. Hooks, D. Tank, P. Rickgauer and L. Petreanu for useful discussions, and M., Chklovskii for the reconstruction in Figure 3b.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Svoboda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peron, S., Svoboda, K. From cudgel to scalpel: toward precise neural control with optogenetics. Nat Methods 8, 30–34 (2011). https://doi.org/10.1038/nmeth.f.325

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.f.325

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing