Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Shotgun glycomics: a microarray strategy for functional glycomics

Abstract

Major challenges of glycomics are to characterize a glycome and identify functional glycans as ligands for glycan-binding proteins (GBPs). To address these issues we developed a general strategy termed shotgun glycomics. We focus on glycosphingolipids (GSLs), a class of glycoconjugates that is challenging to study, recognized by toxins, antibodies and GBPs. We derivatized GSLs extracted from cells with a heterobifunctional fluorescent tag suitable for covalent immobilization. We separated fluorescent GSLs by multidimensional chromatography, quantified them and coupled them to glass slides to create GSL shotgun microarrays. Then we interrogated the microarrays with cholera toxin, antibodies and sera from individuals with Lyme disease to identify biologically relevant GSLs that we subsequently characterized by mass spectrometry. Shotgun glycomics incorporating GSLs and potentially glycoprotein-derived glycans is an approach for accessing the complex glycomes of animal cells and is a strategy for focusing structural analyses on functionally important glycans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic for shotgun glycomics.
Figure 2: Fluorescent derivatization of GSLs for shotgun glycomics.
Figure 3: Binding assay on the BBG–GSL-AOAB microarray prepared from two-dimensional HPLC separation.
Figure 4: Binding of sera from individuals with Lyme disease and control sera on the BBG microarray.
Figure 5: The GSL microarray from human erythrocytes and its interrogation with lectins and antibodies.

Similar content being viewed by others

References

  1. Varki, A. et al. Essentials of Glycobiology 2nd edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2009).

  2. Lowe, J.B. & Marth, J.D. A genetic approach to mammalian glycan function. Annu. Rev. Biochem. 72, 643–691 (2003).

    Article  CAS  Google Scholar 

  3. Freeze, H.H. & Aebi, M. Altered glycan structures: the molecular basis of congenital disorders of glycosylation. Curr. Opin. Struct. Biol. 15, 490–498 (2005).

    Article  CAS  Google Scholar 

  4. Cummings, R.D. The repertoire of glycan determinants in the human glycome. Mol. Biosyst. 5, 1087–1104 (2009).

    Article  CAS  Google Scholar 

  5. Stowell, S.R. et al. Innate immune lectins kill bacteria expressing blood group antigen. Nat. Med. 16, 295–301 (2010).

    Article  CAS  Google Scholar 

  6. Iwamori, M. A new turning point in glycosphingolipid research. Hum. Cell 18, 117–133 (2005).

    Article  Google Scholar 

  7. Avci, F.Y. & Kasper, D.L. How bacterial carbohydrates influence the adaptive immune system. Annu. Rev. Immunol. 28, 107–130 (2010).

    Article  CAS  Google Scholar 

  8. Comelli, E.M. et al. A focused microarray approach to functional glycomics: transcriptional regulation of the glycome. Glycobiology 16, 117–131 (2006).

    Article  CAS  Google Scholar 

  9. Paulson, J.C., Blixt, O. & Collins, B.E. Sweet spots in functional glycomics. Nat. Chem. Biol. 2, 238–248 (2006).

    Article  CAS  Google Scholar 

  10. Song, X. et al. Novel fluorescent glycan microarray strategy reveals ligands for galectins. Chem. Biol. 16, 36–47 (2009).

    Article  CAS  Google Scholar 

  11. Macher, B.A. & Sweeley, C.C. Glycosphingolipids: structure, biological source, and properties. Methods Enzymol. 50, 236–251 (1978).

    Article  CAS  Google Scholar 

  12. Li, Y.T. et al. Preparation of homogenous oligosaccharide chains from glycosphingolipids. Glycoconj. J. 26, 929–933 (2009).

    Article  CAS  Google Scholar 

  13. Luyai, A., Lasanajak, Y., Smith, D.F., Cummings, R.D. & Song, X. Facile preparation of fluorescent neoglycoproteins using p-nitrophenyl anthranilate as a heterobifunctional linker. Bioconjug Chem. 20, 1618–1624 (2009).

    Article  CAS  Google Scholar 

  14. Willison, H.J. Gangliosides as targets for autoimmune injury to the nervous system. J. Neurochem. 103 (Suppl. 1), 143–149 (2007).

    Article  CAS  Google Scholar 

  15. Garcia-Monco, J.C., Seidman, R.J. & Benach, J.L. Experimental immunization with Borrelia burgdorferi induces development of antibodies to gangliosides. Infect. Immun. 63, 4130–4137 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Terabayashi, T. & Kawanishi, Y. Naturally occurring ganglioside lactones in Minke whale brain. Carbohydr. Res. 307, 281–290 (1998).

    Article  CAS  Google Scholar 

  17. Riboni, L. et al. Natural occurrence of ganglioside lactones. Isolation and characterization of GD1b inner ester from adult human brain. J. Biol. Chem. 261, 8514–8519 (1986).

    CAS  PubMed  Google Scholar 

  18. Bassi, R., Riboni, L., Sonnino, S. & Tettamanti, G. Lactonization of GD1b ganglioside under acidic conditions. Carbohydr. Res. 193, 141–146 (1989).

    Article  CAS  Google Scholar 

  19. Anstee, D.J. The nature and abundance of human red cell surface glycoproteins. J. Immunogenet. 17, 219–225 (1990).

    Article  CAS  Google Scholar 

  20. Zhang, G. et al. Suppression of human prostate tumor growth by a unique prostate-specific monoclonal antibody F77 targeting a glycolipid marker. Proc. Natl. Acad. Sci. USA 107, 732–737 (2010).

    Article  CAS  Google Scholar 

  21. Song, X., Lasanajak, Y., Xia, B., Smith, D.F. & Cummings, R.D. Fluorescent glycosylamides produced by microscale derivatization of free glycans for natural glycan microarrays. ACS Chem. Biol. 4, 741–750 (2009).

    Article  CAS  Google Scholar 

  22. Blixt, O. et al. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. USA 101, 17033–17038 (2004).

    Article  CAS  Google Scholar 

  23. Muthing, J. Analyses of glycosphingolipids by high-performance liquid chromatography. Methods Enzymol. 312, 45–64 (2000).

    Article  CAS  Google Scholar 

  24. Ohara, K., Sano, M., Kondo, A. & Kato, I. Two-dimensional mapping by high-performance liquid chromatography of pyridylamino oligosaccharides from various glycosphingolipids. J. Chromatogr. A 586, 35–41 (1991).

    Article  CAS  Google Scholar 

  25. Wing, D.R. et al. High-performance liquid chromatography analysis of ganglioside carbohydrates at the picomole level after ceramide glycanase digestion and fluorescent labeling with 2-aminobenzamide. Anal. Biochem. 298, 207–217 (2001).

    Article  CAS  Google Scholar 

  26. Lopez, P.H. & Schnaar, R.L. Determination of glycolipid-protein interaction specificity. Methods Enzymol. 417, 205–220 (2006).

    Article  CAS  Google Scholar 

  27. Magnani, J.L. et al. A monosialoganglioside is a monoclonal antibody-defined antigen of colon carcinoma. Science 212, 55–56 (1981).

    Article  CAS  Google Scholar 

  28. Stoll, M.S. et al. Fluorescent neoglycolipids. Improved probes for oligosaccharide ligand discovery. Eur. J. Biochem. 267, 1795–1804 (2000).

    Article  CAS  Google Scholar 

  29. Laine, R.A., Yoggeswaran, G. & Hakomori, S. Glycosphingolipids covalently linked to agarose gel or glass beads. Use of the compounds for purification of antibodies directed against globoside and hematoside. J. Biol. Chem. 249, 4460–4466 (1974).

    CAS  PubMed  Google Scholar 

  30. Hirabayashi, Y., Hamaoka, A., Matsumoto, M. & Nishimura, K. An improved method for the separation of molecular species of cerebrosides. Lipids 21, 710–714 (1986).

    Article  CAS  Google Scholar 

  31. Song, X., Xia, B., Lasanajak, Y., Smith, D.F. & Cummings, R.D. Quantifiable fluorescent glycan microarrays. Glycoconj. J. 25, 15–25 (2008).

    Article  CAS  Google Scholar 

  32. Xia, B. et al. Versatile fluorescent derivatization of glycans for glycomic analysis. Nat. Methods 2, 845–850 (2005).

    Article  CAS  Google Scholar 

  33. Jones, K.L. et al. Strong IgG antibody responses to Borrelia burgdorferi glycolipids in patients with Lyme arthritis, a late manifestation of the infection. Clin. Immunol. 132, 93–102 (2009).

    Article  CAS  Google Scholar 

  34. Kinjo, Y. et al. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat. Immunol. 7, 978–986 (2006).

    Article  CAS  Google Scholar 

  35. Schnaar, R.L. Isolation of glycosphingolipids. Methods Enzymol. 230, 348–370 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Bridge grant to R.D.C. from the Consortium for Functional Glycomics from the US National Institute of General Medical Sciences (GM62116) and an Exceptional, Unconventional Research Enabling Knowledge Acceleration (EUREKA) grant (GM085448) to D.F.S. from the National Institute of General Medical Sciences. We thank T. Burgess for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

X.S., R.D.C. and D.F.S. planned the project, and X.S., Y.L., B.X., H.J., C.Z., J.M.R. and R.J.M. carried out the experiments and supplied critical reagents. X.S., Y.L., J.H.-M., R.D.C. and D.F.S. analyzed the data and wrote the manuscript. All authors edited and commented on the manuscript.

Corresponding authors

Correspondence to Richard D Cummings or David F Smith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–3 (PDF 4778 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, X., Lasanajak, Y., Xia, B. et al. Shotgun glycomics: a microarray strategy for functional glycomics. Nat Methods 8, 85–90 (2011). https://doi.org/10.1038/nmeth.1540

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1540

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing