Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors

Abstract

Current methods for whole-genome mapping of protein-DNA interactions, performed by coupling chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq), require large amounts of starting materials, which precludes their application to rare cell types. Here we combine a high-sensitivity ChIP assay with a new library preparation procedure to map histone modifications in as few as 10,000 cells. We used the technique to characterize mouse hematopoietic progenitors and thereby gain insight into their developmental program.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Preparation of sequencing library from small amounts of immunoprecipitated DNA.
Figure 2: Validation of small-cell-number ChIP-seq maps.
Figure 3: Chromatin domains at developmental regulators in hematopoietic progenitors.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Park, P.J. Nat. Rev. Genet. 10, 669–680 (2009).

    Article  CAS  Google Scholar 

  2. Acevedo, L.G. et al. Biotechniques 43, 791–797 (2007).

    Article  CAS  Google Scholar 

  3. O'Neill, L.P., VerMilyea, M.D. & Turner, B.M. Nat. Genet. 38, 835–841 (2006).

    Article  CAS  Google Scholar 

  4. Attema, J.L. et al. Proc. Natl. Acad. Sci. USA 104, 12371–12376 (2007).

    Article  CAS  Google Scholar 

  5. Dahl, J.A. & Collas, P. Nucleic Acids Res. 36, e15 (2008).

    Article  Google Scholar 

  6. Goren, A. et al. Nat. Methods 7, 47–49 (2010).

    Article  CAS  Google Scholar 

  7. Lieb, J.D., Liu, X., Botstein, D. & Brown, P.O. Nat. Genet. 28, 327–334 (2001).

    Article  CAS  Google Scholar 

  8. Mikkelsen, T.S. et al. Nature 448, 553–560 (2007).

    Article  CAS  Google Scholar 

  9. Li, B., Carey, M. & Workman, J.L. Cell 128, 707–719 (2007).

    Article  CAS  Google Scholar 

  10. Tothova, Z. et al. Cell 128, 325–339 (2007).

    Article  CAS  Google Scholar 

  11. Azuara, V. et al. Nat. Cell Biol. 8, 532–538 (2006).

    Article  CAS  Google Scholar 

  12. Bernstein, B.E. et al. Cell 125, 315–326 (2006).

    Article  CAS  Google Scholar 

  13. Cui, K. et al. Cell Stem Cell 4, 80–93 (2009).

    Article  CAS  Google Scholar 

  14. Weishaupt, H., Sigvardsson, M. & Attema, J.L. Blood 115, 247–256 (2010).

    Article  CAS  Google Scholar 

  15. Wei, G. et al. Immunity 30, 155–167 (2009).

    Article  Google Scholar 

  16. Chambers, S.M. et al. Cell Stem Cell 1, 578–591 (2007).

    Article  CAS  Google Scholar 

  17. Bottardi, S., Ghiam, A.F., Bergeron, F. & Milot, E. Cell Cycle 6, 1035–1039 (2007).

    Article  CAS  Google Scholar 

  18. Uchida, N., Aguila, H.L., Fleming, W.H., Jerabek, L. & Weissman, I.L. Blood 83, 3758–3779 (1994).

    CAS  PubMed  Google Scholar 

  19. Morrison, S.J. & Weissman, I.L. Immunity 1, 661–673 (1994).

    Article  CAS  Google Scholar 

  20. Varnum-Finney, B., Dallas, M.H., Kato, K. & Bernstein, I.D. Blood 111, 2615–2620 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Flowers and I. Bernstein for expertise, reagents and assistance in isolation of hematopoietic cells, N. Shoresh and T. Mikkelsen for computational assistance and B. Knoechel, E. Mendenhall, A. Goren and A. Chi for constructive discussions and critical reading of the manuscript. This research was supported by funds from the Starr Cancer Consortium, a Charles E. Culpeper Scholarship, the US National Human Genome Research Institute, the National Institutes of Health Roadmap for Epigenomics and the National Heart, Lung, and Blood Institute.

Author information

Authors and Affiliations

Authors

Contributions

M.A. and B.E.B. designed the method. M.A. performed the experiments. M.A., J.Z. and B.E.B. analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Bradley E Bernstein.

Ethics declarations

Competing interests

M.A. and B.E.B. have filed a patent application describing the methods presented here (US 12/699,508).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1–3 (PDF 4521 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adli, M., Zhu, J. & Bernstein, B. Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors. Nat Methods 7, 615–618 (2010). https://doi.org/10.1038/nmeth.1478

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1478

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing