Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Temporal pixel multiplexing for simultaneous high-speed, high-resolution imaging

Subjects

Abstract

We introduce an imaging modality that, by offsetting pixel-exposure times during capture of a single image frame, embeds temporal information in each frame. This allows simultaneous acquisition of full-resolution images at native detector frame rates and high-speed image sequences at reduced resolution, without increasing bandwidth requirements. We demonstrate this method using macroscopic and microscopic examples, including imaging calcium transients in heart cells at 250 Hz using a 10-Hz megapixel camera.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of TPM principle.
Figure 2: Functional TPM prototype.

Similar content being viewed by others

References

  1. Kner, P., Chhun, B.B., Griffis, E.R., Winoto, L. & Gustafsson, M.G.L. Nat. Methods 6, 339–342 (2009).

    Article  CAS  Google Scholar 

  2. Hanley, Q.S., Verveer, P.J., Gemkow, M.J., Arndt-Jovin, D. & Jovin, T.M. J. Microsc. 196, 317–331 (1999).

    Article  CAS  Google Scholar 

  3. Nayar, S.K., Branzoi, V. & Boult, T.E. Int. J. Comput. Vis. 70, 7–22 (2006).

    Article  Google Scholar 

  4. Takhar, D. et al. Computational Imaging IV 6065, 43–52 (2006).

    Google Scholar 

  5. Hoefling, R. Proc. SPIE 5303, 1117/12.528341 (2004).

    Google Scholar 

  6. Efimov, I.R., Nikolski, V.P. & Salama, G. Circ. Res. 95, 21–33 (2004).

    Article  CAS  Google Scholar 

  7. Spors, H., Wachowiak, M., Cohen, L.B. & Friedrich, R.W. J. Neurosci. 26, 1247–1259 (2006).

    Article  CAS  Google Scholar 

  8. Denvir, D. & Conroy, E. Proc. SPIE 4796, 164–174 (2003).

    Article  Google Scholar 

  9. Entcheva, E. & Bien, H. Prog. Biophys. Mol. Biol. 92, 232–257 (2006).

    Article  Google Scholar 

  10. Tallini, Y.N. et al. Proc. Natl. Acad. Sci. USA 103, 4753–4758 (2006).

    Article  CAS  Google Scholar 

  11. Tominaga, T., Tominaga, Y., Yamada, H., Matsumoto, G. & Ichikawa, M. J. Neurosci. Methods 102, 11–23 (2000).

    Article  CAS  Google Scholar 

  12. Levoy, M., Zhang, Z. & McDowall, I. J. Microsc. 235, 144–162 (2009).

    Article  CAS  Google Scholar 

  13. Veeraraghavan, A., Raskar, R., Agrawal, A., Mohan, A. & Tumblin, J. ACM Trans. Graph. 26, 69:1–69:12 (2007).

    Article  Google Scholar 

  14. Agrawal, A. & Raskar, R. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2007, 1–8 (2007).

    Google Scholar 

  15. Wilburn, B., Joshi, N., Vaish, V., Levoy, M. & Horowitz, M. Proc. CVPR 2004, 294–301 (2004).

    Google Scholar 

  16. Yamamoto, T. et al. J. Physiol. (Lond.) 562, 455–475 (2005).

    Article  CAS  Google Scholar 

  17. Hofling, R. & Ahl, E. Proc. SPIE 2004, 322–329 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Cobden and R. Vaughan-Jones for providing isolated cells, A. Garny for help with editing, and Oxford University's Isis Innovation, the UK Biotechnology and Biological Sciences Research Council and the British Heart Foundation for financial support.

Author information

Authors and Affiliations

Authors

Contributions

G.B. developed the original concept; G.B. and M.T. designed and built the apparatus; M.H., P.L. and P.K. gave technical and/or conceptual support; G.B. performed experiments; G.B. and P.K. wrote the paper.

Corresponding author

Correspondence to Gil Bub.

Ethics declarations

Competing interests

Oxford University's Isis Innovation has filed a patent application with the corresponding author describing the temporal pixel multiplexing concept.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 1320 kb)

Supplementary Video 1

A 400 fps movie taken using a 20 fps camera. Two high-resolution images (1,000 × 1,000 pixels, acquired at 25 fps, see Figure 2b for the first image in the high-resolution sequence) are decoded into 32 250 × 250 pixel subframes with an effective frame rate of 400 fps, showing a milk drop falling into a beaker of water. (MOV 504 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bub, G., Tecza, M., Helmes, M. et al. Temporal pixel multiplexing for simultaneous high-speed, high-resolution imaging. Nat Methods 7, 209–211 (2010). https://doi.org/10.1038/nmeth.1429

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1429

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing