Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Monitoring multiple distances within a single molecule using switchable FRET

Abstract

The analysis of structure and dynamics of biomolecules is important for understanding their function. Toward this aim, we introduce a method called 'switchable FRET', which combines single-molecule fluorescence resonance energy transfer (FRET) with reversible photoswitching of fluorophores. Typically, single-molecule FRET is measured within a single donor-acceptor pair and reports on only one distance. Although multipair FRET approaches that monitor multiple distances have been developed, they are technically challenging and difficult to extend, mainly because of their reliance on spectrally distinct acceptors. In contrast, switchable FRET sequentially probes FRET between a single donor and spectrally identical photoswitchable acceptors, dramatically reducing the experimental and analytical complexity and enabling direct monitoring of multiple distances. Our experiments on DNA molecules, a protein-DNA complex and dynamic Holliday junctions demonstrate the potential of switchable FRET for studying dynamic, multicomponent biomolecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concept of switchable FRET.
Figure 2: Proof-of-principle of switchable FRET.
Figure 3: Switchable FRET with an alternative acceptor.
Figure 4: Switchable FRET monitors two distances within the CAP-DNA complex.
Figure 5: Holliday junction dynamics probed from two perspectives.

Similar content being viewed by others

References

  1. Selvin, P. & Ha, T. (eds). Single Molecule Techniques: A Laboratory Manual 1st edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2008).

  2. Kapanidis, A.N. & Strick, T. Biology, one molecule at a time. Trends Biochem. Sci. 34, 234–243 (2009).

    Article  CAS  Google Scholar 

  3. Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).

    Article  CAS  Google Scholar 

  4. Gadella, T. (ed.). FRET and FLIM Techniques 1st edn. (Elsevier, London, 2009).

  5. Clegg, R.M. Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211, 353–388 (1992).

    Article  CAS  Google Scholar 

  6. Kapanidis, A.N. et al. Fluorescence-aided molecule sorting: Analysis of structure and interactions by alternating-laser excitation of single molecules. Proc. Natl. Acad. Sci. USA 101, 8936–8941 (2004).

    Article  CAS  Google Scholar 

  7. Muschielok, A. et al. A nano-positioning system for macromolecular structural analysis. Nat. Methods 5, 965–971 (2008).

    Article  CAS  Google Scholar 

  8. Hohng, S., Joo, C. & Ha, T. Single-molecule three-color FRET. Biophys. J. 87, 1328–1337 (2004).

    Article  CAS  Google Scholar 

  9. Clamme, J.-P. & Deniz, A.A. Three-color single-molecule fluorescence resonance energy transfer. ChemPhysChem 6, 74–77 (2005).

    Article  CAS  Google Scholar 

  10. Lee, N.K. et al. Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances. Biophys. J. 92, 303–312 (2007).

    Article  CAS  Google Scholar 

  11. Bates, M., Blosser, T.R. & Zhuang, X. Short-range spectroscopic ruler based on a single-molecule optical switch. Phys. Rev. Lett. 94, 108101 (2005).

    Article  Google Scholar 

  12. Heilemann, M., Margeat, E., Kasper, R., Sauer, M. & Tinnefeld, P. Carbocyanine dyes as efficient reversible single-molecule optical switch. J. Am. Chem. Soc. 127, 3801–3806 (2005).

    Article  CAS  Google Scholar 

  13. Rust, M.J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    Article  CAS  Google Scholar 

  14. Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Edn Engl. 47, 6172–6176 (2008).

    Article  CAS  Google Scholar 

  15. Mao, S. et al. Optical lock-in detection of FRET using synthetic and genetically encoded optical switches. Biophys. J. 94, 4515–4524 (2008).

    Article  CAS  Google Scholar 

  16. Jares-Erijman, E.A. & Jovin, T.M. FRET imaging. Nat. Biotechnol. 21, 1387–1395 (2003).

    Article  CAS  Google Scholar 

  17. Vogelsang, J., Cordes, T., Forthmann, C., Steinhauer, C. & Tinnefeld, P. Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy. Proc. Natl. Acad. Sci. USA 106, 8107–8112 (2009).

    Article  CAS  Google Scholar 

  18. Heilemann, M., van de Linde, S., Mukherjee, A. & Sauer, M. Super-resolution imaging with small organic fluorophores. Angew. Chem. Int. Edn. Engl. 48, 6903–6908 (2009).

    Article  CAS  Google Scholar 

  19. Lee, N.K. et al. Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys. J. 88, 2939–2953 (2005).

    Article  CAS  Google Scholar 

  20. Wozniak, A.K., Schröder, G.F., Grubmüller, H., Seidel, C.A. & Oesterhelt, F. Single-molecule FRET measures bends and kinks in DNA. Proc. Natl. Acad. Sci. USA 105, 18337–18342 (2008).

    Article  CAS  Google Scholar 

  21. Margeat, E. et al. Direct observation of abortive initiation and promoter escape within single immobilized transcription complexes. Biophys. J. 90, 1419–1431 (2006).

    Article  CAS  Google Scholar 

  22. Rasnik, I., McKinney, S.A. & Ha, T. Nonblinking and long-lasting single-molecule fluorescence imaging. Nat. Methods 3, 891–893 (2006).

    Article  CAS  Google Scholar 

  23. Mekler, V. et al. Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase-promoter open complex. Cell 108, 599–614 (2002).

    Article  CAS  Google Scholar 

  24. Clegg, R.M., Murchie, A.I., Zechel, A. & Lilley, D.M. Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 90, 2994–2998 (1993).

    Article  CAS  Google Scholar 

  25. Holden, S.J. et al. Defining the limits of single-molecule FRET resolution in TIRF microscopy. Biophys. J. (in the press).

  26. Lawson, C.L. et al. Catabolite activator protein: DNA binding and transcription activation. Curr. Opin. Struct. Biol. 14, 10–20 (2004).

    Article  CAS  Google Scholar 

  27. Napoli, A.A., Lawson, C.L., Ebright, R.H. & Berman, H.M. Indirect readout of DNA sequence at the primary-kink site in the CAP-DNA complex: recognition of pyrimidine-purine and purine-purine steps. J. Mol. Biol. 357, 173–183 (2006).

    Article  CAS  Google Scholar 

  28. Kapanidis, A.N., Ebright, Y.W., Ludescher, R.D., Chan, S. & Ebright, R.H. Mean DNA bend angle and distribution of DNA bend angles in the CAP-DNA complex in solution. J. Mol. Biol. 312, 453–468 (2001).

    Article  CAS  Google Scholar 

  29. Karymov, M., Daniel, D., Sankey, O.F. & Lyubchenko, Y.L. Holliday junction dynamics and branch migration: Single-molecule analysis. Proc. Natl. Acad. Sci. USA 102, 8186–8191 (2005).

    Article  CAS  Google Scholar 

  30. McKinney, S.A., Joo, C. & Ha, T. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys. J. 91, 1941–1951 (2006).

    Article  CAS  Google Scholar 

  31. Santoso, Y. et al. Conformational transitions in DNA polymerase I revealed by single-molecule FRET. Proc. Natl. Acad. Sci. USA 107, 715–720 (2010).

    Article  CAS  Google Scholar 

  32. Heilemann, M., Hwang, L.C., Lymperopoulos, K. & Kapanidis, A.N. Single-molecule FRET analysis of protein-DNA complexes. Methods Mol. Biol. 543, 503–521 (2009).

    Article  CAS  Google Scholar 

  33. Kapanidis, A.N. et al. Alternating-laser excitation of single molecules. in Single Molecule Techniques: A Laboratory Manual 1st edn. (eds. Selvin, P. & Ha, T.) 85–119 (Cold Spring Harbor Laboratory Press, 2008).

  34. Cordes, T., Vogelsang, J. & Tinnefeld, P. On the mechanism of Trolox as antiblinking and antibleaching reagent. J. Am. Chem. Soc. 131, 5018–5019 (2009).

    Article  CAS  Google Scholar 

  35. Irwin, M. Detectors and data analysis techniques for widefield optical imaging. in Instrumentation for Large Telescopes: VIIth Canary Islands Winter School of Astrophysics 35–74 (1997) (Cambridge University Press, New York, 1997).

  36. Crocker, J.C. & Grier, D.G. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996).

    Article  CAS  Google Scholar 

  37. Deniz, A.A. et al. Single-pair fluorescence resonance energy transfer on freely diffusing molecules: Observation of Förster distance dependence and subpopulations. Proc. Natl. Acad. Sci. USA 96, 3670–3675 (1999).

    Article  CAS  Google Scholar 

  38. Norman, D.G., Grainger, R.J., Uhrin, D. & Lilley, D.M.J. Location of cyanine-3 on double-stranded DNA: importance for fluorescence resonance energy transfer studies. Biochemistry 39, 6317–6324 (2000).

    Article  CAS  Google Scholar 

  39. Cooper, M. et al. Cy3B: Improving the performance of cyanine dyes. J. Fluoresc. 14, 145–150 (2004).

    Article  CAS  Google Scholar 

  40. Gell, C., Brockwell, D. & Smith, A. Handbook of Single Molecule Fluorescence Spectroscopy (Oxford University Press, 2006).

  41. Dale, R.E., Eisinger, J. & Blumberg, W.E. The orientational freedom of molecular probes. Biophys. J. 26, 161–193 (1979).

    Article  CAS  Google Scholar 

  42. Berney, C. & Danuser, G. FRET or no FRET: A quantitative comparison. Biophys. J. 84, 3992–4010 (2003).

    Article  CAS  Google Scholar 

  43. Daigle, O., Carignan, C. & Blais-Ouellette, S. Faint flux performance of an EMCCD. Proc. SPIE. 6276, 62761–62767 (2006).

    Article  Google Scholar 

  44. Thompson, R.E., Larson, D.R. & Webb, W.W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002).

    Article  CAS  Google Scholar 

  45. Kapanidis, A.N., Ebright, Y.W. & Ebright, R.H. Site-specific incorporation of fluorescent probes into protein: Hexahistidine-tag-mediated fluorescent labeling using (Ni2+:Nitrilotriacetic acid)n-fluorochrome conjugates. J. Am. Chem. Soc. 123, 12123–12125 (2001).

    Article  CAS  Google Scholar 

  46. McKinney, S.A., Déclais, A.-C., Lilley, D.M. & Ha, T. Structural dynamics of individual Holliday junctions. Nat. Struct. Biol. 10, 93–97 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Gryte, J. Hohlbein, T.M.C. Rito and A. Riegert for technical and editorial assistance, and M. Leake for suggestions. S.U., S.J.H., L.L.R., J.P. and A.N.K. were supported by a UK Bionanotechnology Interdisciplinary Research Collaboration grant, Engineering and Physical Science Research Council grant EP/D058775 and European Community Seventh Framework Programme (FP7/2007-2013) grant HEALTH-F4-2008-201418 (entitled READNA). S.U. was supported by the German National Academic Foundation and the company SAP AG. M.H. and S.v.d.L. were supported by the Systems Biology Initiative (Forschungseinheiten der Systembiologie) of the German Ministry of Research and Education (0315262).

Author information

Authors and Affiliations

Authors

Contributions

S.U., M.H. and A.N.K. designed research; S.U. performed experiments and simulations; S.U. and S.J.H. analyzed data; L.L.R. built experimental setup; S.U., J.P. and S.v.d.L. prepared reagents; S.U. and A.N.K. wrote manuscript; and S.U., S.J.H., L.L.R., J.P., S.v.d.L., M.H. and A.N.K. discussed results and commented on the manuscript.

Corresponding author

Correspondence to Achillefs N Kapanidis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–4 (PDF 2273 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uphoff, S., Holden, S., Le Reste, L. et al. Monitoring multiple distances within a single molecule using switchable FRET. Nat Methods 7, 831–836 (2010). https://doi.org/10.1038/nmeth.1502

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1502

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing