Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Imaging intracellular RNA distribution and dynamics in living cells

Abstract

Powerful methods now allow the imaging of specific mRNAs in living cells. These methods enlist fluorescent proteins to illuminate mRNAs, use labeled oligonucleotide probes and exploit aptamers that render organic dyes fluorescent. The intracellular dynamics of mRNA synthesis, transport and localization can be analyzed at higher temporal resolution with these methods than has been possible with traditional fixed-cell or biochemical approaches. These methods have also been adopted to visualize and track single mRNA molecules in real time. This review explores the promises and limitations of these methods.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enlisting GFP to image mRNAs.
Figure 2: Detecting mRNA with hybridization probes.
Figure 3: A scheme for detection of mRNA using malachite green and an aptamer that binds to it and renders it fluorescent.
Figure 4: Tracking single mRNA molecules in live cells using MS2-GFP and molecular beacons.

Similar content being viewed by others

References

  1. Dirks, R.W. & Tanke, H.J. Advances in fluorescent tracking of nucleic acids in living cells. Biotechniques 40, 489–496 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Rodriguez, A.J., Condeelis, J., Singer, R.H. & Dictenberg, J.B. Imaging mRNA movement from transcription sites to translation sites. Semin. Cell Dev. Biol. 18, 202–208 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Querido, E. & Chartrand, P. Using fluorescent proteins to study mRNA trafficking in living cells. Methods Cell Biol. 85, 273–292 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. LeCuyer, K.A., Behlen, L.S. & Uhlenbeck, O.C. Mutagenesis of a stacking contact in the MS2 coat protein–RNA complex. EMBO J. 15, 6847–6853 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bertrand, E. et al. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437–445 (1998). First paper to describe the MS2 coat protein–GFP approach for imaging mRNA dynamics in live cells.

    Article  CAS  PubMed  Google Scholar 

  6. Beach, D.L., Salmon, E.D. & Bloom, K. Localization and anchoring of mRNA in budding yeast. Curr. Biol. 9, 569–578 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Forrest, K.M. & Gavis, E.R. Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila. Curr. Biol. 13, 1159–1168 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Zimyanin, V.L. et al. In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization. Cell 134, 843–853 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weil, T.T., Forrest, K.M. & Gavis, E.R. Localization of bicoid mRNA in late oocytes is maintained by continual active transport. Dev. Cell 11, 251–262 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Jaramillo, A.M., Weil, T.T., Goodhouse, J., Gavis, E.R. & Schupbach, T. The dynamics of fluorescently labeled endogenous gurken mRNA in Drosophila. J. Cell Sci. 121, 887–894 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Rook, M.S., Lu, M. & Kosik, K.S. CaMKIIalpha 3′ untranslated region-directed mRNA translocation in living neurons: visualization by GFP linkage. J. Neurosci. 20, 6385–6393 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dynes, J.L. & Steward, O. Dynamics of bidirectional transport of Arc mRNA in neuronal dendrites. J. Comp. Neurol. 500, 433–447 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Chubb, J.R., Trcek, T., Shenoy, S.M. & Singer, R.H. Transcriptional pulsing of a developmental gene. Curr. Biol. 16, 1018–1025 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mili, S., Moissoglu, K. & Macara, I.G. Genome-wide screen reveals APC-associated RNAs enriched in cell protrusions. Nature 453, 115–119 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Golding, I. & Cox, E.C. RNA dynamics in live Escherichia coli cells. Proc. Natl. Acad. Sci. USA 101, 11310–11315 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shav-Tal, Y. et al. Dynamics of single mRNPs in nuclei of living cells. Science 304, 1797–1800 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Haim, L., Zipor, G., Aronov, S. & Gerst, J.E. A genomic integration method to visualize localization of endogenous mRNAs in living yeast. Nat. Methods 4, 409–412 (2007).

    CAS  PubMed  Google Scholar 

  18. Daigle, N. & Ellenberg, J. λN-GFP: an RNA reporter system for live-cell imaging. Nat. Methods 4, 633–636 (2007). A keenly awaited alternative to MS2 coat protein–GFP tagging; it creates the possibility of tracking two mRNAs in the same cells: one using MS2 hairpin and MS2 coat protein–GFP fusion and the other using boxB RNA motif and λ N -RFP fusion.

    Article  CAS  PubMed  Google Scholar 

  19. Lange, S. et al. Simultaneous transport of different localized mRNA species revealed by live-cell imaging. Traffic 9, 1256–1267 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Calapez, A. et al. The intranuclear mobility of messenger RNA binding proteins is ATP dependent and temperature sensitive. J. Cell Biol. 159, 795–805 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fusco, D. et al. Single mRNA molecules demonstrate probabilistic movement in living Mammalian cells. Curr. Biol. 13, 161–167 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kerppola, T.K. Visualization of molecular interactions by fluorescence complementation. Nat. Rev. Mol. Cell Biol. 7, 449–456 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rackham, O. & Brown, C.M. Visualization of RNA-protein interactions in living cells: FMRP and IMP1 interact on mRNAs. EMBO J. 23, 3346–3355 (2004). long with references 24 and 25, this paper describes the split-GFP approach: only GFP that is bound to the mRNA yields fluorescence, whereas the excess and free GFP does not produce any signal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Valencia-Burton, M., McCullough, R.M., Cantor, C.R. & Broude, N.E. RNA visualization in live bacterial cells using fluorescent protein complementation. Nat. Methods 4, 421–427 (2007).

    CAS  PubMed  Google Scholar 

  25. Ozawa, T., Natori, Y., Sato, M. & Umezawa, Y. Imaging dynamics of endogenous mitochondrial RNA in single living cells. Nat. Methods 4, 413–419 (2007).

    CAS  PubMed  Google Scholar 

  26. Magliery, T.J. et al. Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism. J. Am. Chem. Soc. 127, 146–157 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Anderie, I. & Schmid, A. In vivo visualization of actin dynamics and actin interactions by BiFC. Cell Biol. Int. 31, 1131–1135 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Morrison, L.E., Halder, T.C. & Stols, L.M. Solution-phase detection of polynucleotides using interacting fluorescent labels and competitive hybridization. Anal. Biochem. 183, 231–244 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Li, Q., Luan, G., Guo, Q. & Liang, J. A new class of homogeneous nucleic acid probes based on specific displacement hybridization. Nucleic Acids Res. 30, E5 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sixou, S. et al. Intracellular oligonucleotide hybridization detected by fluorescence resonance energy transfer (FRET). Nucleic Acids Res. 22, 662–668 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cardullo, R.A., Agrawal, S., Flores, C., Zamecnik, P.C. & Wolf, D.E. Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 85, 8790–8794 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tsuji, A. et al. Direct observation of specific messenger RNA in a single living cell under a fluorescence microscope. Biophys. J. 78, 3260–3274 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sando, S. & Kool, E.T. Imaging of RNA in bacteria with self-ligating quenched probes. J. Am. Chem. Soc. 124, 9686–9687 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Abe, H. & Kool, E.T. Flow cytometric detection of specific RNAs in native human cells with quenched autoligating FRET probes. Proc. Natl. Acad. Sci. USA 103, 263–268 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Tyagi, S. & Kramer, F.R. Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303–308 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Tyagi, S., Bratu, D.P. & Kramer, F.R. Multicolor molecular beacons for allele discrimination. Nat. Biotechnol. 16, 49–53 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Bratu, D.P., Cha, B.J., Mhlanga, M.M., Kramer, F.R. & Tyagi, S. Visualizing the distribution and transport of mRNAs in living cells. Proc. Natl. Acad. Sci. USA 100, 13308–13313 (2003). Using rigorous cell biological and probe-based controls, this report shows that endogenous mRNAs can be imaged and tracked in live cells using nuclease-resistant molecular beacons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Santangelo, P.J., Nix, B., Tsourkas, A. & Bao, G. Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Res. 32, e57 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang, W. et al. Imaging and characterizing influenza A virus mRNA transport in living cells. Nucleic Acids Res. 36, 4913–4928 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tyagi, S. & Alsmadi, O. Imaging native beta-actin mRNA in motile fibroblasts. Biophys. J. 87, 4153–4162 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Santangelo, P., Nitin, N., LaConte, L., Woolums, A. & Bao, G. Live-cell characterization and analysis of a clinical isolate of bovine respiratory syncytial virus, using molecular beacons. J. Virol. 80, 682–688 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Santangelo, P.J. & Bao, G. Dynamics of filamentous viral RNPs prior to egress. Nucleic Acids Res. 35, 3602–3611 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kloc, M. et al. Potential structural role of non-coding and coding RNAs in the organization of the cytoskeleton at the vegetal cortex of Xenopus oocytes. Development 132, 3445–3457 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Cui, Z.Q. et al. Visualizing the dynamic behavior of poliovirus plus-strand RNA in living host cells. Nucleic Acids Res. 33, 3245–3252 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vargas, D.Y., Raj, A., Marras, S.A., Kramer, F.R. & Tyagi, S. Mechanism of mRNA transport in the nucleus. Proc. Natl. Acad. Sci. USA 102, 17008–17013 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yeh, H.Y., Yates, M.V., Mulchandani, A. & Chen, W. Visualizing the dynamics of viral replication in living cells via Tat peptide delivery of nuclease-resistant molecular beacons. Proc. Natl. Acad. Sci. USA 105, 17522–17525 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Politz, J.C., Browne, E.S., Wolf, D.E. & Pederson, T. Intranuclear diffusion and hybridization state of oligonucleotides measured by fluorescence correlation spectroscopy in living cells. Proc. Natl. Acad. Sci. USA 95, 6043–6048 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Molenaar, C., Abdulle, A., Gena, A., Tanke, H.J. & Dirks, R.W. Poly(A)+ RNAs roam the cell nucleus and pass through speckle domains in transcriptionally active and inactive cells. J. Cell Biol. 165, 191–202 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Siebrasse, J.P. et al. Discontinuous movement of mRNP particles in nucleoplasmic regions devoid of chromatin. Proc. Natl. Acad. Sci. USA 105, 20291–20296 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Svanvik, N., Westman, G., Wang, D. & Kubista, M. Light-up probes: thiazole orange-conjugated peptide nucleic acid for detection of target nucleic acid in homogeneous solution. Anal. Biochem. 281, 26–35 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Mhlanga, M.M., Vargas, D.V., Fung, C., Kramer, F.R. & Tyagi, S. tRNA-linked molecular beacons for imaging mRNAs in the cytoplasm of living cells. Nucleic Acids Res. 33, 1902–1912 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Walev, I. et al. Delivery of proteins into living cells by reversible membrane permeabilization with streptolysin-O. Proc. Natl. Acad. Sci. USA 98, 3185–3190 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen, A.K., Behlke, M.A. & Tsourkas, A. Efficient cytosolic delivery of molecular beacon conjugates and flow cytometric analysis of target RNA. Nucleic Acids Res. 36, e69 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Melikov, K. & Chernomordik, L.V. Arginine-rich cell penetrating peptides: from endosomal uptake to nuclear delivery. Cell. Mol. Life Sci. 62, 2739–2749 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Nitin, N., Santangelo, P.J., Kim, G., Nie, S. & Bao, G. Peptide-linked molecular beacons for efficient delivery and rapid mRNA detection in living cells. Nucleic Acids Res. 32, e58 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Leonetti, J.P., Mechti, N., Degols, G., Gagnor, C. & Lebleu, B. Intracellular distribution of microinjected antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 88, 2702–2706 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fisher, T.L., Terhorst, T., Cao, X. & Wagner, R.W. Intracellular disposition and metabolism of fluorescently-labeled unmodified and modified oligonucleotides microinjected into mammalian cells. Nucleic Acids Res. 21, 3857–3865 (1993). This early paper shows that deoxyoligonucleotides with natural phosphodiester backbone are sequestered in the nucleus and are degraded rapidly, and points to backbone modifications that improve the intracellular stability of oligonucleotides.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Walder, R.Y. & Walder, J.A. Role of RNase H in hybrid-arrested translation by antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 85, 5011–5015 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hoke, G.D. et al. Effects of phosphorothioate capping on antisense oligonucleotide stability, hybridization and antiviral efficacy versus herpes simplex virus infection. Nucleic Acids Res. 19, 5743–5748 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wu, Y., Yang, C.J., Moroz, L.L. & Tan, W. Nucleic acid beacons for long-term real-time intracellular monitoring. Anal. Chem. 80, 3025–3028 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Luebke, K.J., Balog, R.P. & Garner, H.R. Prioritized selection of oligodeoxyribonucleotide probes for efficient hybridization to RNA transcripts. Nucleic Acids Res. 31, 750–758 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bratu, D.P. Molecular beacons: fluorescent probes for detection of endogenous mRNAs in living cells. Methods Mol. Biol. 319, 1–14 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Lakowicz, J.R. Principles of Fluorescence Spectroscopy. (Kluwer Academic/Plenum Publishers, New York, 1999).

    Book  Google Scholar 

  65. Babendure, J.R., Adams, S.R. & Tsien, R.Y. Aptamers switch on fluorescence of triphenylmethane dyes. J. Am. Chem. Soc. 125, 14716–14717 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Szent-Gyorgyi, C. et al. Fluorogen-activating single-chain antibodies for imaging cell surface proteins. Nat. Biotechnol. 26, 235–240 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Sparano, B.A. & Koide, K. Fluorescent sensors for specific RNA: a general paradigm using chemistry and combinatorial biology. J. Am. Chem. Soc. 129, 4785–4794 (2007). Description of a new approach for RNA imaging using an aptamer that binds to a cell-permeant dye and renders the aptamer dye fluorescent.

    Article  CAS  PubMed  Google Scholar 

  68. Sando, S., Narita, A. & Aoyama, Y. Light-up Hoechst-DNA aptamer pair: generation of an aptamer-selective fluorophore from a conventional DNA-staining dye. ChemBioChem 8, 1795–1803 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Narita, A. Development of new sensing technologies toward non-invasive nucleic acid analysis. Thesis, Koyoto Univ. (2008).

  70. Grate, D. & Wilson, C. Laser-mediated, site-specific inactivation of RNA transcripts. Proc. Natl. Acad. Sci. USA 96, 6131–6136 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shaner, N.C. et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Methods 5, 545–551 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Richards, C.I. et al. Oligonucleotide-stabilized Ag nanocluster fluorophores. J. Am. Chem. Soc. 130, 5038–5039 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim, J.H., Morikis, D. & Ozkan, M. Adaptation of inorganic quantum dots for stable molecular beacons. Sensors and Actuators B 102, 315–319 (2004).

    Article  CAS  Google Scholar 

  74. Cady, N.C., Strickland, A.D. & Batt, C.A. Optimized linkage and quenching strategies for quantum dot molecular beacons. Mol. Cell. Probes 21, 116–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Weissleder, R., Tung, C.H., Mahmood, U. & Bogdanov, A. Jr., In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol. 17, 375–378 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. So, M.K., Gowrishankar, G., Hasegawa, S., Chung, J.K. & Rao, J. Imaging target mRNA and siRNA-mediated gene silencing in vivo with ribozyme-based reporters. ChemBioChem 9, 2682–2691 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Andou, T., Endoh, T., Mie, M. & Kobatake, E. RNA detection using peptide-inserted Renilla luciferase. Anal. Bioanal. Chem. 393, 661–668 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Marras, S.A., Kramer, F.R. & Tyagi, S. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res. 30, e122 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bernacchi, S. & Mely, Y. Exciton interaction in molecular beacons: a sensitive sensor for short range modifications of the nucleic acid structure. Nucleic Acids Res. 29, e62 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Johansson, M.K., Fidder, H., Dick, D. & Cook, R.M. Intramolecular dimers: a new strategy to fluorescence quenching in dual-labeled oligonucleotide probes. J. Am. Chem. Soc. 124, 6950–6956 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank S. Marras of Public Health Research Institute for assistance with figures. The author's research is supported by National Institute of Mental Health grant MH079197.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Tyagi.

Ethics declarations

Competing interests

S.T. and his institution receive royalties from sale and use of molecular beacons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyagi, S. Imaging intracellular RNA distribution and dynamics in living cells. Nat Methods 6, 331–338 (2009). https://doi.org/10.1038/nmeth.1321

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1321

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing