Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms

Abstract

MicroRNAs are important regulators of gene expression, yet the functional outputs of most microRNA-target interactions remain elusive. Here we introduce the Drosophila melanogaster microRNA sponge (miR-SP) as a powerful transgenic technology to dissect the function of every microRNA with precise spatiotemporal resolution. miR-SPs can be used to characterize tissue-specific microRNA loss-of-function phenotypes, define the spatial regulation of their effectors and uncover interactions between microRNAs and other genes. Using themiR-SP system, we identified an essential role of the conserved microRNA miR-8, in neuromuscular junction formation. Tissue-specific silencing revealed that postsynaptic activity of miR-8 is important for normal neuromuscular junction morphogenesis. Given that miR-SPs rely on a bipartite modular expression system, they could be used to elucidate the endogenous function of microRNAs in any species in which conditional expression can be achieved.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design and functionality of transgenic miR-SP elements.
Figure 2: Effective tissue-specific silencing of endogenous microRNA activity by miR-SP.
Figure 3: Discovery of microRNA functions using miR-SP elements.
Figure 4: MiR-SPs define microRNA activity with spatial specificity.
Figure 5: MiR-SP elements can uncover tissue-specific microRNA function.
Figure 6: Genetic dissection of Ena function confirms miR-8-mediated postsynaptic regulation of NMJ morphogenesis.

Similar content being viewed by others

References

  1. Bushati, N. & Cohen, S.M. microRNA functions. Annu. Rev. Cell Dev. Biol. 23, 175–205 (2007).

    Article  CAS  Google Scholar 

  2. Eulalio, A., Huntzinger, E. & Izaurralde, E. Getting to the root of miRNA-mediated gene silencing. Cell 132, 9–14 (2008).

    Article  CAS  Google Scholar 

  3. Aboobaker, A.A., Tomancak, P., Patel, N., Rubin, G.M. & Lai, E.C. Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc. Natl. Acad. Sci. USA 102, 18017–18022 (2005).

    Article  CAS  Google Scholar 

  4. Kawaji, H. & Hayashizaki, Y. Exploration of small RNAs. PLoS Genet. 4, e22 (2008).

    Article  Google Scholar 

  5. Silver, S.J., Hagen, J.W., Okamura, K., Perrimon, N. & Lai, E.C. Functional screening identifies miR-315 as a potent activator of Wingless signaling. Proc. Natl. Acad. Sci. USA 104, 18151–18156 (2007).

    Article  CAS  Google Scholar 

  6. Lim, L.P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    Article  CAS  Google Scholar 

  7. Hutvagner, G., Simard, M.J., Mello, C.C. & Zamore, P.D. Sequence-specific inhibition of small RNA function. PLoS Biol. 2, E98 (2004).

    Article  Google Scholar 

  8. Ebert, M.S., Neilson, J.R. & Sharp, P.A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4, 721–726 (2007).

    Article  CAS  Google Scholar 

  9. Brown, B.D. & Naldini, L. Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat. Rev. Genet. 10, 578–585 (2009).

    Article  CAS  Google Scholar 

  10. Stern, P. et al. A system for Cre-regulated RNA interference in vivo. Proc. Natl. Acad. Sci. USA 105, 13895–13900 (2008).

    Article  CAS  Google Scholar 

  11. Elliott, D.A. & Brand, A.H. The GAL4 system: a versatile system for the expression of genes. Methods Mol. Biol. 420, 79–95 (2008).

    Article  CAS  Google Scholar 

  12. Stark, A., Brennecke, J., Bushati, N., Russell, R.B. & Cohen, S.M. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123, 1133–1146 (2005).

    Article  CAS  Google Scholar 

  13. Kuzin, A., Kundu, M., Brody, T. & Odenwald, W.F. The Drosophila nerfin-1 mRNA requires multiple microRNAs to regulate its spatial and temporal translation dynamics in the developing nervous system. Dev. Biol. 310, 35–43 (2007).

    Article  CAS  Google Scholar 

  14. Li, Y., Wang, F., Lee, J.A. & Gao, F.B. MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Genes Dev. 20, 2793–2805 (2006).

    Article  CAS  Google Scholar 

  15. Li, X. & Carthew, R.W. A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell 123, 1267–1277 (2005).

    Article  CAS  Google Scholar 

  16. Karres, J.S., Hilgers, V., Carrera, I., Treisman, J. & Cohen, S.M. The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell 131, 136–145 (2007).

    Article  CAS  Google Scholar 

  17. Kosik, K.S. The neuronal microRNA system. Nat. Rev. Neurosci. 7, 911–920 (2006).

    Article  CAS  Google Scholar 

  18. Lugli, G., Torvik, V.I., Larson, J. & Smalheiser, N.R. Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J. Neurochem. 106, 650–661 (2008).

    Article  CAS  Google Scholar 

  19. Collins, C.A. & DiAntonio, A. Synaptic development: insights from Drosophila. Curr. Opin. Neurobiol. 17, 35–42 (2007).

    Article  CAS  Google Scholar 

  20. Keshishian, H. & Kim, Y.S. Orchestrating development and function: retrograde BMP signaling in the Drosophila nervous system. Trends Neurosci. 27, 143–147 (2004).

    Article  CAS  Google Scholar 

  21. Shcherbata, H.R. et al. Stage-specific differences in the requirements for germline stem cell maintenance in the Drosophila ovary. Cell Stem Cell 1, 698–709 (2007).

    Article  CAS  Google Scholar 

  22. Drees, F. & Gertler, F.B. Ena/VASP: proteins at the tip of the nervous system. Curr. Opin. Neurobiol. 18, 53–59 (2008).

    Article  CAS  Google Scholar 

  23. Gates, J. et al. Enabled plays key roles in embryonic epithelial morphogenesis in Drosophila. Development 134, 2027–2039 (2007).

    Article  CAS  Google Scholar 

  24. Asakawa, K. & Kawakami, K. Targeted gene expression by the Gal4-UAS system in zebrafish. Dev. Growth Differ. 50, 391–399 (2008).

    Article  CAS  Google Scholar 

  25. Sauer, B. & Henderson, N. Cre-stimulated recombination at loxP-containing DNA sequences placed into the mammalian genome. Nucleic Acids Res. 17, 147–161 (1989).

    Article  CAS  Google Scholar 

  26. Rebay, I. & Rubin, G.M. Yan functions as a general inhibitor of differentiation and is negatively regulated by activation of the Ras1/MAPK pathway. Cell 81, 857–866 (1995).

    Article  CAS  Google Scholar 

  27. Comer, A.R., Ahern-Djamali, S.M., Juang, J.L., Jackson, P.D. & Hoffmann, F.M. Phosphorylation of Enabled by the Drosophila Abelson tyrosine kinase regulates the in vivo function and protein-protein interactions of Enabled. Mol. Cell. Biol. 18, 152–160 (1998).

    Article  CAS  Google Scholar 

  28. Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  Google Scholar 

  29. Johnson, K.G. et al. The HSPGs Syndecan and Dallylike bind the receptor phosphatase LAR and exert distinct effects on synaptic development. Neuron 49, 517–531 (2006).

    Article  CAS  Google Scholar 

  30. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    Article  CAS  Google Scholar 

  31. Rehmsmeier, M., Steffen, P., Hochsmann, M. & Giegerich, R. Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507–1517 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Greenberg, N. Perrimon, T. Schwarz, M. Feany and J. Flanagan for critical feedback on the manuscript; M. Ebert for advice on designing the miR-SP constructs and for comments on the manuscript; V. Sridhar and members of the Harvard NeuroDiscovery Center Optical Imaging program for technical assistance; R.W. Carthew (Northwestern University) for GMR-YanAct; F.B. Gao (University of California San Francisco) for miR-9aJ22 and miR-9aE39; M. Peifer (University of North Carolina) for UAS-FP4-mitoEGFP; F.M. Hoffmann (University of Wisconsin-Madison) for ena210 and UAS-ena; H. Ruohola-Baker (University of Washington) for miR-8-GFP sensor; J. Brennecke (Institutes of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna) for nerfin-1 3′ UTR reporter; S. Cohen (Temasek Life Sciences Laboratory) for miR-8Δ2; and members of the Developmental Studies Hybridoma Bank (University of Iowa, Department of Biological Sciences) for antibodies. C.M.L., C.S.L. and D.V.V. were supported by a grant from the National Institutes of Health (NS40043). T.A.F. was supported in part by a fellowship from the John Douglas French Alzheimer's Foundation.

Author information

Authors and Affiliations

Authors

Contributions

T.A.F. conceived and designed the miR-SP technology. C.M.L. and T.A.F. designed and performed the experiments, analyzed the data and interpreted the results. C.S.L. generated the miR-8 null mutant and independent of this study performed preliminary NMJ analysis and proposed Ena as a candidate miR-8 effector. D.V.V. supervised the study and provided material and salary support for C.M.L., C.S.L. and T.A.F. The text and figures were drafted by T.A.F., and T.A.F., D.V.V. and C.M.L. edited them.

Corresponding authors

Correspondence to David Van Vactor or Tudor A Fulga.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–2 (PDF 1828 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loya, C., Lu, C., Van Vactor, D. et al. Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nat Methods 6, 897–903 (2009). https://doi.org/10.1038/nmeth.1402

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1402

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing