Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Automated high-throughput mapping of promoter-enhancer interactions in zebrafish embryos

Abstract

Zebrafish embryos offer a unique combination of high-throughput capabilities and the complexity of the vertebrate animal for a variety of phenotypic screening applications. However, there is a need for automation of imaging technologies to exploit the potential of the transparent embryo. Here we report a high-throughput pipeline for registering domain-specific reporter expression in zebrafish embryos with the aim of mapping the interactions between cis-regulatory modules and core promoters. Automated microscopy coupled with custom-built embryo detection and segmentation software allowed the spatial registration of reporter activity for 202 enhancer-promoter combinations, based on images of thousands of embryos. The diversity of promoter-enhancer interaction specificities underscores the importance of the core promoter sequence in cis-regulatory interactions and provides a promoter resource for transgenic reporter studies. The technology described here is also suitable for the spatial analysis of fluorescence readouts in genetic, pharmaceutical or toxicological screens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A pipeline for automated spatial registration of tissue-specific reporter gene activity in zebrafish embryos.
Figure 2: Two-dimensional embryo image warping tool to detect mosaic reporter expression patterns in groups of embryos.
Figure 3: Registration of domain-specific expression in transgenic embryos.
Figure 4: Activities of enhancer-promoter combinations.
Figure 5: Detection of domain specific changes of reporter gene expression in a stable transgenic line.

Similar content being viewed by others

References

  1. Pepperkok, R. & Ellenberg, J. High-throughput fluorescence microscopy for systems biology. Nat. Rev. Mol. Cell Biol. 7, 690–696 (2006).

    Article  CAS  Google Scholar 

  2. Zon, L.I. & Peterson, R.T. In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov. 4, 35–44 (2005).

    Article  CAS  Google Scholar 

  3. Lieschke, G.J. & Currie, P.D. Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8, 353–367 (2007).

    Article  CAS  Google Scholar 

  4. Yang, L. et al. Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reprod. Toxicol. 28, 245–253 (2009).

    Article  CAS  Google Scholar 

  5. Westerfield, M., Wegner, J., Jegalian, B.G., DeRobertis, E.M. & Puschel, A.W. Specific activation of mammalian Hox promoters in mosaic transgenic zebrafish. Genes Dev. 6, 591–598 (1992).

    Article  CAS  Google Scholar 

  6. Müller, F. et al. Intronic enhancers control expression of zebrafish sonic hedgehog in floor plate and notochord. Development 126, 2103–2116 (1999).

    PubMed  Google Scholar 

  7. Barton, L.M. et al. Regulation of the stem cell leukemia (SCL) gene: a tale of two fishes. Proc. Natl. Acad. Sci. USA 98, 6747–6752 (2001).

    Article  CAS  Google Scholar 

  8. Woolfe, A. et al. Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol. 3, e7 (2005).

    Article  Google Scholar 

  9. Tran, T.C. et al. Automated, quantitative screening assay for antiangiogenic compounds using transgenic zebrafish. Cancer Res. 67, 11386–11392 (2007).

    Article  CAS  Google Scholar 

  10. Liu, T. et al. Computerized image analysis for quantitative neuronal phenotyping in zebrafish. J. Neurosci. Methods 153, 190–202 (2006).

    Article  Google Scholar 

  11. Vogt, A. et al. Automated image-based phenotypic analysis in zebrafish embryos. Dev. Dyn. 238, 656–663 (2009).

    Article  Google Scholar 

  12. Kleinjan, D.A., Seawright, A., Childs, A.J. & van Heyningen, V. Conserved elements in Pax6 intron 7 involved in (auto)regulation and alternative transcription. Dev. Biol. 265, 462–477 (2004).

    Article  CAS  Google Scholar 

  13. Lettice, L.A. et al. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum. Mol. Genet. 12, 1725–1735 (2003).

    Article  CAS  Google Scholar 

  14. Carninci, P. et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nat. Genet. 38, 626–635 (2006).

    Article  CAS  Google Scholar 

  15. Sandelin, A. et al. Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat. Rev. Genet. 8, 424–436 (2007).

    Article  CAS  Google Scholar 

  16. Juven-Gershon, T., Hsu, J.Y., Theisen, J.W. & Kadonaga, J.T. The RNA polymerase II core promoter—the gateway to transcription. Curr. Opin. Cell Biol. 20, 253–259 (2008).

    Article  CAS  Google Scholar 

  17. Uemura, O. et al. Comparative functional genomics revealed conservation and diversification of three enhancers of the isl1 gene for motor and sensory neuron-specific expression. Dev. Biol. 278, 587–606 (2005).

    Article  CAS  Google Scholar 

  18. Shkumatava, A., Fischer, S., Müller, F., Strahle, U. & Neumann, C.J. Sonic hedgehog, secreted by amacrine cells, acts as a short-range signal to direct differentiation and lamination in the zebrafish retina. Development 131, 3849–3858 (2004).

    Article  CAS  Google Scholar 

  19. Strahle, U., Fischer, N. & Blader, P. Expression and regulation of a netrin homologue in the zebrafish embryo. Mech. Dev. 62, 147–160 (1997).

    Article  CAS  Google Scholar 

  20. Müller, F. et al. Direct action of the nodal-related signal cyclops in induction of sonic hedgehog in the ventral midline of the CNS. Development 127, 3889–3897 (2000).

    PubMed  Google Scholar 

  21. Hadzhiev, Y. et al. Hedgehog signaling patterns the outgrowth of unpaired skeletal appendages in zebrafish. BMC Dev. Biol. 7, 75 (2007).

    Article  Google Scholar 

  22. Ellingsen, S. et al. Large-scale enhancer detection in the zebrafish genome. Development 132, 3799–3811 (2005).

    Article  CAS  Google Scholar 

  23. Parinov, S., Kondrichin, I., Korzh, V. & Emelyanov, A. Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo. Dev. Dyn. 231, 449–459 (2004).

    Article  CAS  Google Scholar 

  24. Scott, E.K. et al. Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat. Methods 4, 323–326 (2007).

    Article  CAS  Google Scholar 

  25. Asakawa, K. et al. Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc. Natl. Acad. Sci. USA 105, 1255–1260 (2008).

    Article  CAS  Google Scholar 

  26. Jin, S.W. et al. A transgene-assisted genetic screen identifies essential regulators of vascular development in vertebrate embryos. Dev. Biol. 307, 29–42 (2007).

    Article  CAS  Google Scholar 

  27. Kuhn, R.M. et al. The UCSC genome browser database: update 2007. Nucleic Acids Res. 35, D668–D673 (2007).

    Article  CAS  Google Scholar 

  28. Roure, A. et al. A multicassette Gateway vector set for high throughput and comparative analyses in ciona and vertebrate embryos. PLoS One 2, e916 (2007).

    Article  Google Scholar 

  29. O'Boyle, S., Bree, R.T., McLoughlin, S., Grealy, M. & Byrnes, L. Identification of zygotic genes expressed at the midblastula transition in zebrafish. Biochem. Biophys. Res. Commun. 358, 462–468 (2007).

    Article  CAS  Google Scholar 

  30. Ferg, M. et al. The TATA-binding protein regulates maternal mRNA degradation and differential zygotic transcription in zebrafish. EMBO J. 26, 3945–3956 (2007).

    Article  CAS  Google Scholar 

  31. Wakaguri, H., Yamashita, R., Suzuki, Y., Sugano, S. & Nakai, K. DBTSS: database of transcription start sites, progress report 2008. Nucleic Acids Res. 36, D97–D101 (2008).

    Article  CAS  Google Scholar 

  32. Müller, F. et al. Activator effect of coinjected enhancers on the muscle-specific expression of promoters in zebrafish embryos. Mol. Reprod. Dev. 47, 404–412 (1997).

    Article  Google Scholar 

  33. Song, D.L., Chalepakis, G., Gruss, P. & Joyner, A.L. Two Pax-binding sites are required for early embryonic brain expression of an Engrailed-2 transgene. Development 122, 627–635 (1996).

    CAS  PubMed  Google Scholar 

  34. Kikuta, H. et al. Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. Genome Res. 17, 545–555 (2007).

    Article  CAS  Google Scholar 

  35. Huang, C.J., Tu, C.T., Hsiao, C.D., Hsieh, F.J. & Tsai, H.J. Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev. Dyn. 228, 30–40 (2003).

    Article  CAS  Google Scholar 

  36. Zerucha, T. et al. A highly conserved enhancer in the Dlx5/Dlx6 intergenic region is the site of cross-regulatory interactions between Dlx genes in the embryonic forebrain. J. Neurosci. 20, 709–721 (2000).

    Article  CAS  Google Scholar 

  37. Nakano, T., Windrem, M., Zappavigna, V. & Goldman, S.A. Identification of a conserved 125 base-pair Hb9 enhancer that specifies gene expression to spinal motor neurons. Dev. Biol. 283, 474–485 (2005).

    Article  CAS  Google Scholar 

  38. Sanges, R. et al. Shuffling of cis-regulatory elements is a pervasive feature of the vertebrate lineage. Genome Biol. 7, R56 (2006).

    Article  Google Scholar 

  39. Westerfield, M. The Zebrafish Book. (University of Oregon Press, Eugene, Oregon, USA, 1995).

    Google Scholar 

  40. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. & Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    Article  CAS  Google Scholar 

  41. Liebel, U. et al. A microscope-based screening platform for large-scale functional protein analysis in intact cells. FEBS Lett. 554, 394–398 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Borel for fish care, K. Straatman, N. Groebner and P. Kobor for technical support, T. Becker (Brain and Mind Research Institute, University of Sydney) for the dre-mir9-1 enhancer and R. Sanges and E. Stupka for unpublished promoter analysis. This work was supported by FP6 projects EUTRACC and TRANSCODE, by the European Commission and the Deutsche Forschungsgemeinschaft to F.M. and programme grant by the Helmholtz Association of German Research Centres (HGF) to U.L. We thank the technical support team of Olympus Germany and Olympus UK, U. Strähle for general support and N. Foulkes and A. Cullinane for advice and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

E.K. created the constructs, E.K., J.G. led the screening and imaging of embryos, M.R. designed and created automation software and automated image processing, F.M. and U.L. supervised the screen, M.F., Y.H., A.Z., C.S. and S.S. participated in the embryo screen. J.G., M.R., E.K. and F.M. analyzed data, U.L. designed and constructed the screening platform, F.M., E.K., J.G., M.R. and U.L. designed the study and J.G., M.R., E.K. and F.M. wrote the manuscript.

Corresponding authors

Correspondence to Urban Liebel or Ferenc Müller.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–3, 5–7, Supplementary Note (PDF 3433 kb)

Supplementary Table 4

Number of embryos and domain specific Venus signal intensity data of enhancer-promoter combinations assayed in this study (XLS 67 kb)

Supplementary Software

Zebrafish 2D reporter gene expression profiler (ZIP 132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gehrig, J., Reischl, M., Kalmár, É. et al. Automated high-throughput mapping of promoter-enhancer interactions in zebrafish embryos. Nat Methods 6, 911–916 (2009). https://doi.org/10.1038/nmeth.1396

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1396

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing