Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Computational methods for discovering structural variation with next-generation sequencing

Abstract

In the last several years, a number of studies have described large-scale structural variation in several genomes. Traditionally, such methods have used whole-genome array comparative genome hybridization or single-nucleotide polymorphism arrays to detect large regions subject to copy-number variation. Later techniques have been based on paired-end mapping of Sanger sequencing data, providing better resolution and accuracy. With the advent of next-generation sequencing, a new generation of methods is being developed to tackle the challenges of short reads, while taking advantage of the high coverage the new sequencing technologies provide. In this survey, we describe these methods, including their strengths and their limitations, and future research directions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustrations of PEM signatures.
Figure 2: Depth-of-coverage signature and distribution-based clustering.
Figure 3: The power of clustering for improving resolution.

Similar content being viewed by others

References

  1. Iafrate, A.J. et al. Detection of large-scale variation in the human genome. Nat. Genet. 36, 949–951 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Tuzun, E. et al. Fine-scale structural variation of the human genome. Nat. Genet. 37, 727–732 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Korbel, J.O. et al. Paired-end mapping reveals extensive structural variation in the human genome. Science 318, 420–426 (2007). One of the first studies to use NGS data to detect structural variants, including using the linking signature for detecting insertions larger than the insert size.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Feuk, L., Carson, A.R. & Scherer, S.W. Structural variation in the human genome. Nat. Rev. Genet. 7, 85–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Kidd, J.M. et al. Mapping and sequencing of structural variation from eight human genomes. Nature 453, 56–64 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McCarroll, S.A. et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat. Genet. 40, 1166–1174 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Cooper, G.M., Zerr, T., Kidd, J.M., Eichler, E.E. & Nickerson, D.A. Systematic assessment of copy number variant detection via genome-wide SNP genotyping. Nat. Genet. 40, 1199–1203 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee, S., Cheran, E. & Brudno, M. A robust framework for detecting structural variations in a genome. Bioinformatics 24, i59–i67 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bentley, D.R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008). The first high coverage NGS dataset of an individual. This data set has been used in many subsequent studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hormozdiari, F., Alkan, C., Eichler, E.E. & Sahinalp, S.C. Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes. Genome Res. 19, 1270–1278 (2009). One of the first comprehensive tools for structural variant detection; supports most basic signatures and uses soft clustering.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee, S., Hormozdiari, F., Alkan, C. & Brudno, M. MoDIL: detecting small indels from clone-end sequencing with mixtures of distributions. Nat. Methods 6, 473–474 (2009). The first method to use a distribution-based clustering approach, allowing the detection of smaller indels, and explicitly modeling heterozygosity.

    Article  CAS  PubMed  Google Scholar 

  12. McCarroll, S.A. & Altshuler, D.M. Copy-number variation and association studies of human disease. Nat. Genet. 39, S37–S42 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Futreal, P.A. et al. A census of human cancer genes. Nat. Rev. Cancer 4, 177–183 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cooper, G.M., Nickerson, D.E. & Eichler, E.E. Mutational and selective effects on copy-number variants in the human genome. Nat. Genet. 39, S22–S29 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Volik, S. et al. End-sequence profiling: Sequence-based analysis of aberrant genomes. Proc. Natl. Acad. Sci. USA 100, 7696–7701 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Raphael, B.J., Volik, S., Collins, C. & Pevzner, P.A. Reconstructing tumor genome architectures. Bioinformatics 19 (suppl. 2), 162–171 (2003).

    Google Scholar 

  17. Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Singleton, A.B. et al. Alpha-synuclein locus triplication causes Parkinson's disease. Science 302, 841 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, P.M. et al. Analysis of copy number variants and segmental duplications in the human genome: Evidence for a change in the process of formation in recent evolutionary history. Genome Res. 18, 1865–1874 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pinkel, D. et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet. 20, 207–211 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Sharp, A.J. et al. Segmental duplications and copy-number variation in the human genome. Am. J. Hum. Genet. 77, 78–88 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carter, N.P. Methods and strategies for analyzing copy number variation using DNA microarrays. Nat. Genet. 39, S16–S21 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. International HapMap Consortium. The International HapMap Project. Nature 437, 1299–1320 (2005).

  25. Conrad, D.F., Andrews, T.D., Carter, N.P., Hurles, M.E. & Pritchard, J.K. A high-resolution survey of deletion polymorphism in the human genome. Nat. Genet. 38, 75–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Hinds, D.A., Kloek, A.P., Jen, M., Chen, X. & Frazer, K.A. Common deletions and SNPs are in linkage disequilibrium in the human genome. Nat. Genet. 38, 82–85 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. McCarroll, S.A. et al. Common deletion polymorphisms in the human genome. Nat. Genet. 38, 86–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Sindi, S. & Raphael, B. Identification and frequency estimation of inversion polymorphisms from haplotype data. in Research in Computational Molecular Biology: Proc. RECOMB 2009 vol. 5541 (ed. Batzoglou, S.) 418–433 (Springer, Berlin, 2009).

    Chapter  Google Scholar 

  29. Rusk, N. & Kiermer, V. Primer: Sequencing—the next generation. Nat. Methods 5, 15 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Ansorge, W.J. Next-generation sequencing techniques. New Biotechnol. 25, 195–203 (2009).

    Article  CAS  Google Scholar 

  32. Siva, N. 1000 Genomes project. Nat. Biotechnol. 26, 256 (2008).

    Article  PubMed  Google Scholar 

  33. Bashir, A., Volik, S., Collins, C., Bafna, V. & Raphael, B.J. Evaluation of paired-end sequencing strategies for detection of genome rearrangements in cancer. PLOS Comput. Biol. 4, e1000051 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Campbell, P.J. et al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat. Genet. 40, 722–729 (2008). The first study to use the DOC signatures in NGS data, detecting CNVs in tumor samples.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mills, R.E. et al. An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res. 16, 1182–1190 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ye, K., Schulz, M.H., Long, Q., Apweiler, R. & Ning, Z. Pindel: a pattern growth approach to detect breakpoints of large deletions and medium sized insertions from paired-end short reads. Bioinformatics published online, doi:10.1093/bioinformatics/btp394 (26 June 2009). A method that is able to detect indels with base-pair breakpoint resolution using NGS data, on the basis of the anchored split mapping signature.

  37. Bailey, J.A. et al. Recent segmental duplications in the human genome. Science 297, 1003–1007 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Cheng, Z. et al. A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature 437, 88–93 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Dohm, J.C., Lottaz, C., Borodina, T. & Himmelbauer, H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res. 36, e105 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Harismendy, O. et al. Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biol. 10, R32 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Korbel, J.O. et al. PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data. Genome Biol. 10, R23 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  42. McKernan, K.J. et al. Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Res. 19, 1527–1541; doi:10.1101/gr.091868.109 (22 June 2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, K. et al. BreakDancer: An algorithm for high resolution mapping of genomic structural variation. Nat. Methods 6, 677–681; doi:10.1038/nmeth.1363 (9 August 2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chiang, D.Y. et al. High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat. Methods 6, 99–103 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Wong, K.K. et al. A comprehensive analysis of common copy-number variations in the human genome. Am. J. Hum. Genet. 80, 91–104 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Locke, D.P. et al. Refinement of a chimpanzee pericentric inversion breakpoint to a segmental duplication cluster. Genome Biol. 4, R50 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Brudno.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medvedev, P., Stanciu, M. & Brudno, M. Computational methods for discovering structural variation with next-generation sequencing. Nat Methods 6 (Suppl 11), S13–S20 (2009). https://doi.org/10.1038/nmeth.1374

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1374

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing