Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms

Abstract

Biological pathways are structured in complex networks of interacting genes. Solving the architecture of such networks may provide valuable information, such as how microorganisms cause disease. Here we present a method (Tn-seq) for accurately determining quantitative genetic interactions on a genome-wide scale in microorganisms. Tn-seq is based on the assembly of a saturated Mariner transposon insertion library. After library selection, changes in frequency of each insertion mutant are determined by sequencing the flanking regions en masse. These changes are used to calculate each mutant's fitness. Using this approach, we determined fitness for each gene of Streptococcus pneumoniae, a causative agent of pneumonia and meningitis. A genome-wide screen for genetic interactions of five query genes identified both alleviating and aggravating interactions that could be divided into seven distinct categories. Owing to the wide activity of the Mariner transposon, Tn-seq has the potential to contribute to the exploration of complex pathways across many different species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic depiction of Tn-seq.
Figure 2: Fitness determination and classification.
Figure 3: Validation of Tn-seq fitness measurements.
Figure 4: Genetic interaction network of query genes ccpA (SP_1999), malR (SP_2112), malX (SP_2108), regR (SP_0330) and hypothetical ABC transporter gene SP_1683.
Figure 5: Validation of genetic interactions.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Pan, X. et al. A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124, 1069–1081 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Fiedler, D. et al. Functional organization of the S. cerevisiae phosphorylation network. Cell 136, 952–963 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tong, A.H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Pan, X. et al. A robust toolkit for functional profiling of the yeast genome. Mol. Cell 16, 487–496 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Schuldiner, M. et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123, 507–519 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Roguev, A. et al. Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322, 405–410 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Typas, A. et al. High-throughput, quantitative analyses of genetic interactions in E. coli. Nat. Methods 5, 781–787 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Butland, G. et al. eSGA: E. coli synthetic genetic array analysis. Nat. Methods 5, 789–795 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Joshi, S.M. et al. Characterization of mycobacterial virulence genes through genetic interaction mapping. Proc. Natl. Acad. Sci. USA 103, 11760–11765 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Girgis, H. et al. A comprehensive genetic characterization of bacterial motility. PLoS Genet. 3, 1644–1660 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Lampe, D.J., Churchill, M. & Robertson, H. A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J. 15, 5470–5479 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jacobs, M.A. et al. Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 100, 14339–14344 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fujita, Y. Carbon catabolite control of the metabolic network in Bacillus subtilis. Biosci. Biotechnol. Biochem. 73, 245–259 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Giammarinaro, P. & Paton, J. Role of RegM, a homologue of the catabolite repressor protein CcpA, in the virulence of Streptococcus pneumoniae. Infect. Immun. 70, 5454–5461 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Iyer, R., Baliga, N.S. & Camilli, A. Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae. J. Bacteriol. 187, 8340–8349 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chapuy-Regaud, S. et al. RegR, a global LacI/GalR family regulator, modulates virulence and competence in Streptococcus pneumoniae. Infect. Immun. 71, 2615–2625 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nieto, C., Espinosa, M. & Puyet, A. The maltose/maltodextrin regulon of Streptococcus pneumoniae differential promoter regulation by the transcriptional repressor MalR. J. Biol. Chem. 272, 30860–30865 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. von Mering, C. et al. STRING 7–recent developments in the integration and prediction of protein interactions. Nucleic Acids Res. 35, D358–D362 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Mascher, T. et al. The Streptococcus pneumoniae cia regulon: CiaR target sites and transcription profile analysis. J. Bacteriol. 185, 60–70 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Throup, J.P. et al. A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol. Microbiol. 35, 566–576 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Sebert, M.E. et al. Microarray-based identification of htrA, a Streptococcus pneumoniae gene that is regulated by the CiaRH two-component system and contributes to nasopharyngeal colonization. Infect. Immun. 70, 4059–4067 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Drees, B.L. et al. Derivation of genetic interaction networks from quantitative phenotype data. Genome Biol. 6, R38 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  24. St. Onge, R.P. et al. Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions. Nat. Genet. 39, 199–206 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. King, S.J., Hippe, K.R. & Weiser, J. Deglycosylation of human glycoconjugates by the sequential activities of exoglycosidases expressed by Streptococcus pneumoniae. Mol. Microbiol. 59, 961–974 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Lampe, D.J. et al. Hyperactive transposase mutants of the Himar1 mariner transposon. Proc. Natl. Acad. Sci. USA 96, 11428–11433 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bae, T. et al. Generating a collection of insertion mutations in the Staphylococcus aureus genome using bursa aurealis. Methods Mol. Biol. 416, 103–116 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Akerley, B.J. et al. Systematic identification of essential genes by in vitro mariner mutagenesis. Proc. Natl. Acad. Sci. USA 95, 8927–8932 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sassetti, C.M., Boyd, D.H. & Rubin, E.J. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48, 77–84 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Bricker, A.L. & Camilli, A. Transformation of a type 4 encapsulated strain of Streptococcus pneumoniae. FEMS Microbiol. Lett. 172, 131–135 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Hava, D.L. & Camilli, A. Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol. Microbiol. 45, 1389–1406 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Langmead, B. et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li, H., Ruan, J. & Durbin, R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 18, 1851–1858 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lenski, R.E., Rose, M.R.S. & Tadler, S.C. Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am. Nat. 138, 1315–1341 (1991).

    Article  Google Scholar 

  35. van Opijnen, T., Boerlijst, M.C. & Berkhout, B. Effects of random mutations in the human immunodeficiency virus type 1 transcriptional promoter on viral fitness in different host cell environments. J. Virol. 80, 6678–6685 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hava, D.L. & Camilli, A. Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol. Microbiol. 45, 1389–1406 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Marcusson, L.L. et al. Interplay in the selection of fluoroquinolone resistance and bacterial fitness. PLoS Pathog. 5, e1000541 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shannon, P. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Sonenshein, R. Isberg, R. Iyer and N. Vastenhouw for both discussions and comments on the manuscript, members of the Tufts University core facility for Illumina sequencing and members of the Camilli lab, particularly D. Lazinski, and A. Boorsma for helpful discussions. This work was supported by a grant from the Netherlands Organization for Scientific Research (NWO-Rubicon) to T.v.O. and by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

T.v.O. and A.C. designed research, analyzed the data and wrote the paper. T.v.O. performed research and K.L.B. contributed to data analysis.

Corresponding author

Correspondence to Andrew Camilli.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1,5–7 (PDF 193 kb)

Supplementary Table 2

Wild-type library fitness values (XLS 426 kb)

Supplementary Table 3

GSEA enrichment analysis (XLS 26 kb)

Supplementary Table 4

Genetic interactions and fitness values for five query genes (XLS 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Opijnen, T., Bodi, K. & Camilli, A. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 6, 767–772 (2009). https://doi.org/10.1038/nmeth.1377

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1377

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing