Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Automated analysis of embryonic gene expression with cellular resolution in C. elegans

Abstract

We describe a system that permits the automated analysis of reporter gene expression in Caenorhabditis elegans with cellular resolution continuously during embryogenesis. We demonstrate its utility by defining the expression patterns of reporters for several embryonically expressed transcription factors. The invariant cell lineage permits the automated alignment of multiple expression profiles, allowing direct comparison of the expression of different genes' reporters. We also used this system to monitor perturbations to normal development involving changes both in cell-division timing and in cell fate. Systematic application of this system could reveal the gene activity of each cell throughout development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lineage-based expression data display.
Figure 2: Comparison of expression patterns.
Figure 3: Expression changes after RNAi.

Similar content being viewed by others

References

  1. Lawrence, P.A., Johnston, P., Macdonald, P. & Struhl, G. Borders of parasegments in Drosophila embryos are delimited by the fushi tarazu and even-skipped genes. Nature 328, 440–442 (1987).

    Article  CAS  Google Scholar 

  2. Fox, R.M. et al. A gene expression fingerprint of C. elegans embryonic motor neurons. BMC Genomics 6, 42 (2005).

    Article  Google Scholar 

  3. Baugh, L.R., Hill, A.A., Slonim, D.K., Brown, E.L. & Hunter, C.P. Composition and dynamics of the Caenorhabditis elegans early embryonic transcriptome. Development 130, 889–900 (2003).

    Article  CAS  Google Scholar 

  4. Baugh, L.R. et al. The homeodomain protein PAL-1 specifies a lineage-specific regulatory network in the C. elegans embryo. Development 132, 1843–1854 (2005).

    Article  CAS  Google Scholar 

  5. Furlong, E.E., Andersen, E.C., Null, B., White, K.P. & Scott, M.P. Patterns of gene expression during Drosophila mesoderm development. Science 293, 1629–1633 (2001).

    Article  CAS  Google Scholar 

  6. Arbeitman, M.N. et al. Gene expression during the life cycle of Drosophila melanogaster. Science 297, 2270–2275 (2002).

    Article  CAS  Google Scholar 

  7. Zhang, Y. et al. Identification of genes expressed in C. elegans touch receptor neurons. Nature 418, 331–335 (2002).

    Article  CAS  Google Scholar 

  8. Sulston, J.E., Schierenberg, E., White, J.G. & Thomson, J.N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    Article  CAS  Google Scholar 

  9. Murray, J.I., Bao, Z., Boyle, T. & Waterston, R.H. The lineaging of fluorescently-labeled Caenorhabditis elegans embryos with StarryNite and AceTree. Nat. Protoc. 1, 1468–1476 (2006).

    Article  CAS  Google Scholar 

  10. Bao, Z. et al. Automated cell lineage tracing in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA. 103, 2707–2712 (2006).

    Article  CAS  Google Scholar 

  11. Boyle, T.J., Bao, Z., Murray, J.I., Araya, C.L. & Waterston, R.H. AceTree: a tool for visual analysis of Caenorhabditis elegans embryogenesis. BMC Bioinformatics 7, 275 (2006).

    Article  Google Scholar 

  12. McNally, K., Audhya, A., Oegema, K. & McNally, F.J. Katanin controls mitotic and meiotic spindle length. J. Cell Biol. 175, 881–891 (2006).

    Article  CAS  Google Scholar 

  13. Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  Google Scholar 

  14. Azzaria, M., Goszczynski, B., Chung, M.A., Kalb, J.M. & McGhee, J.D. A fork head/HNF-3 homolog expressed in the pharynx and intestine of the Caenorhabditis elegans embryo. Dev. Biol. 178, 289–303 (1996).

    Article  CAS  Google Scholar 

  15. Kalb, J.M. et al. pha-4 is Ce-fkh-1, a fork head/HNF-3alpha,beta,gamma homolog that functions in organogenesis of the C. elegans pharynx. Development 125, 2171–2180 (1998).

    CAS  PubMed  Google Scholar 

  16. Horner, M.A. et al. pha-4, an HNF-3 homolog, specifies pharyngeal organ identity in Caenorhabditis elegans. Genes Dev. 12, 1947–1952 (1998).

    Article  CAS  Google Scholar 

  17. Hallam, S., Singer, E., Waring, D. & Jin, Y. The C. elegans NeuroD homolog cnd-1 functions in multiple aspects of motor neuron fate specification. Development 127, 4239–4252 (2000).

    CAS  PubMed  Google Scholar 

  18. Krause, M. MyoD and myogenesis in C. elegans. Bioessays 17, 219–228 (1995).

    Article  CAS  Google Scholar 

  19. Maduro, M.F. et al. Genetic redundancy in endoderm specification within the genus Caenorhabditis. Dev. Biol. 284, 509–522 (2005).

    Article  CAS  Google Scholar 

  20. Maduro, M.F. & Rothman, J.H. Making worm guts: the gene regulatory network of the Caenorhabditis elegans endoderm. Dev. Biol. 246, 68–85 (2002).

    Article  CAS  Google Scholar 

  21. Lin, R., Hill, R.J. & Priess, J.R. POP-1 and anterior-posterior fate decisions in C. elegans embryos. Cell 92, 229–239 (1998).

    Article  CAS  Google Scholar 

  22. Lin, R., Thompson, S. & Priess, J.R. pop-1 encodes an HMG box protein required for the specification of a mesoderm precursor in early C. elegans embryos. Cell 83, 599–609 (1995).

    Article  CAS  Google Scholar 

  23. Kaletta, T., Schnabel, H. & Schnabel, R. Binary specification of the embryonic lineage in Caenorhabditis elegans. Nature 390, 294–298 (1997).

    Article  CAS  Google Scholar 

  24. Bieri, T. et al. WormBase: new content and better access. Nucleic Acids Res. 35, D506–D510 (2007).

    Article  CAS  Google Scholar 

  25. Hunt-Newbury, R. et al. High-throughput in vivo analysis of gene expression in Caenorhabditis elegans. PLoS Biol. 5, e237 (2007).

    Article  Google Scholar 

  26. Reece-Hoyes, J.S. et al. Insight into transcription factor gene duplication from Caenorhabditis elegans promoterome-driven expression patterns. BMC Genomics 8, 27 (2007).

    Article  Google Scholar 

  27. Sarov, M. et al. A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nat. Methods 3, 839–844 (2006).

    Article  CAS  Google Scholar 

  28. Saldanha, A.J. Java Treeview–extensible visualization of microarray data. Bioinformatics 20, 3246–3248 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Thomas, J. Priess and members of their labs for helpful discussions. We also thank J. Thomas for critical comments on the manuscript. We thank A. Audhya (University of Wisconsin, Madison) for providing worm-optimized mCherry before publication and J. Waddle (Southern Methodist University) for providing unpublished HIS-24 protein fusion vectors. Some nematode strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the US National Institutes of Health National Center for Research Resources. This work was partially supported by funding from the National Institutes of Health. J.I.M. is a fellow of the Jane Coffin Childs Memorial Fund for Medical Research. Z.B. is a Damon Runyon Fellow supported by Damon Runyon Cancer Research Fellowship (DRG-1813-04).

Author information

Authors and Affiliations

Authors

Contributions

R.H.W., Z.B. and J.I.M. conceived the experiments. J.I.M., Z.B., M.E.B., T.J.N., B.L.M., Z.Z. and M.J.S. performed the experiments. T.J.B., Z.B. and J.I.M. wrote software for data analysis. J.I.M., Z.B., T.J.B. and J.I.M. analyzed the data. J.I.M. and R.H.W. wrote the paper with input from the other authors.

Corresponding author

Correspondence to Robert H Waterston.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1–2; Supplementary Methods (PDF 458 kb)

Supplementary Data (XLS 10082 kb)

Supplementary Video 1.

3D projection for pha-4 reporter image series. A 3D projection of a single pha-4 image series showing ubiquitous GFP (green) and pha-4 driven H1-DsRed.T1 (red). (MOV 5332 kb)

Supplementary Video 2.

3D model of pha-4 reporter expression. A 3D model of development derived from our analysis showing expressing cells as spheres colored by lineage identity as in Figure 1B and nonexpressing cells as semitransparent spheres. (MOV 3557 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, J., Bao, Z., Boyle, T. et al. Automated analysis of embryonic gene expression with cellular resolution in C. elegans. Nat Methods 5, 703–709 (2008). https://doi.org/10.1038/nmeth.1228

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1228

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing